设为首页 加入收藏

TOP

Linux分页机制之分页机制的实现详解--Linux内存管理(八)(一)
2019-09-01 23:09:40 】 浏览:140
Tags:Linux 机制 实现 详解 --Linux 内存 管理

1 linux的分页机制

1.1 四级分页机制

前面我们提到Linux内核仅使用了较少的分段机制,但是却对分页机制的依赖性很强,其使用一种适合32位和64位结构的通用分页模型,该模型使用四级分页机制,即

  • 页全局目录(Page Global Directory)
  • 页上级目录(Page Upper Directory)
  • 页中间目录(Page Middle Directory)
  • 页表(Page Table)
  • 页全局目录包含若干页上级目录的地址;
  • 页上级目录又依次包含若干页中间目录的地址;
  • 而页中间目录又包含若干页表的地址;
  • 每一个页表项指向一个页框。

    因此线性地址因此被分成五个部分,而每一部分的大小与具体的计算机体系结构有关。

1.2 不同架构的分页机制

对于不同的体系结构,Linux采用的四级页表目录的大小有所不同:对于i386而言,仅采用二级页表,即页上层目录和页中层目录长度为0;对于启用PAE的i386,采用了三级页表,即页上层目录长度为0;对于64位体系结构,可以采用三级或四级页表,具体选择由硬件决定。

对于没有启用物理地址扩展的32位系统,两级页表已经足够了。从本质上说Linux通过使“页上级目录”位和“页中间目录”位全为0,彻底取消了页上级目录和页中间目录字段。不过,页上级目录和页中间目录在指针序列中的位置被保留,以便同样的代码在32位系统和64位系统下都能使用。内核为页上级目录和页中间目录保留了一个位置,这是通过把它们的页目录项数设置为1,并把这两个目录项映射到页全局目录的一个合适的目录项而实现的。

启用了物理地址扩展的32 位系统使用了三级页表。Linux 的页全局目录对应80x86 的页目录指针表(PDPT),取消了页上级目录,页中间目录对应80x86的页目录,Linux的页表对应80x86的页表。

最终,64位系统使用三级还是四级分页取决于硬件对线性地址的位的划分。

1.3 为什么linux热衷:分页>分段

那么,为什么Linux是如此地热衷使用分页技术而对分段机制表现得那么地冷淡呢,因为Linux的进程处理很大程度上依赖于分页。事实上,线性地址到物理地址的自动转换使下面的设计目标变得可行:

  • 给每一个进程分配一块不同的物理地址空间,这确保了可以有效地防止寻址错误。
  • 区别页(即一组数据)和页框(即主存中的物理地址)之不同。这就允许存放在某个页框中的一个页,然后保存到磁盘上,以后重新装入这同一页时又被装在不同的页框中。这就是虚拟内存机制的基本要素。

每一个进程有它自己的页全局目录和自己的页表集。当发生进程切换时,Linux把cr3控制寄存器的内容保存在前一个执行进程的描述符中,然后把下一个要执行进程的描述符的值装入cr3寄存器中。因此,当新进程重新开始在CPU上执行时,分页单元指向一组正确的页表。

把线性地址映射到物理地址虽然有点复杂,但现在已经成了一种机械式的任务。

2 linux中页表处理数据结构

2.1 页表类型定义pgd_t、pmd_t、pud_t和pte_t

Linux分别采用pgd_tpmd_tpud_tpte_t四种数据结构来表示页全局目录项、页上级目录项、页中间目录项和页表项。这四种 数据结构本质上都是无符号长整型unsigned long

Linux为了更严格数据类型检查,将无符号长整型unsigned long分别封装成四种不同的页表项。如果不采用这种方法,那么一个无符号长整型数据可以传入任何一个与四种页表相关的函数或宏中,这将大大降低程序的健壮性。

pgprot_t是另一个64位(PAE激活时)或32位(PAE禁用时)的数据类型,它表示与一个单独表项相关的保护标志。

首先我们查看一下子这些类型是如何定义的

2.1.1 pteva l_t,pmdval_t,pudval_t,pgdval_t

参照arch/x86/include/asm/pgtable_64_types.h

#ifndef __ASSEMBLY__
#include <linux/types.h>

/*
 * These are used to make use of C type-checking..
 */
typedef unsigned long   pteva l_t;
typedef unsigned long   pmdval_t;
typedef unsigned long   pudval_t;
typedef unsigned long   pgdval_t;
typedef unsigned long   pgprotval_t;

typedef struct { pteva l_t pte; } pte_t;

#endif  /* !__ASSEMBLY__ */

2.1.2 pgd_t、pmd_t、pud_t和pte_t

参照 /arch/x86/include/asm/pgtable_types.h

typedef struct { pgdval_t pgd; } pgd_t;

static inline pgd_t native_make_pgd(pgdval_t val)
{
        return (pgd_t) { val };
}

static inline pgdval_t native_pgd_val(pgd_t pgd)
{
        return pgd.pgd;
}

static inline pgdval_t pgd_flags(pgd_t pgd)
{
        return native_pgd_val(pgd) & PTE_FLAGS_MASK;
}

#if CONFIG_PGTABLE_LEVELS > 3
typedef struct { pudval_t pud; } pud_t;

static inline pud_t native_make_pud(pmdval_t val)
{
        return (pud_t) { val };
}

static inline pudval_t native_pud_val(pud_t pud)
{
        return pud.pud;
}
#else
#include <asm-generic/pgtable-nopud.h>

static inline pudval_t native_pud_val(pud_t pud)
{
        return native_pgd_val(pud.pgd);
}
#endif

#if CONFIG_PGTABLE_LEVELS > 2
typedef struct { pmdval_t pmd; } pmd_t;

static inline pmd_t native_make_pmd(pmdval_t val)
{
        return (pmd_t) { val };
}

static inline pmdval_t native_pmd_val(pmd_t pmd)
{
        return pmd.pmd;
}
#else
#include <asm-generic/pgtable-nopmd.h>

static inline pmdval_t native_pmd_val(pmd_t pmd)
{
        return native_pgd_val(pmd.pud.pgd);
}
#endif

static inline pudval_t pud_pfn_mask(pud_t pud)
{
        if (
首页 上一页 1 2 3 4 5 6 7 下一页 尾页 1/7/7
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇Linux下的进程类别(内核线程、轻.. 下一篇1.Linux电源管理-休眠与唤醒

最新文章

热门文章

Hot 文章

Python

C 语言

C++基础

大数据基础

linux编程基础

C/C++面试题目