设为首页 加入收藏

TOP

浅析项目中的并发 ( 二 )(一)
2017-11-13 14:55:32 】 浏览:438
Tags:浅析 项目 并发

分布式遭遇并发

在前面的章节,并发操作要么发生在单个应用内,一般使用基于JVM的lock解决并发问题,要么发生在数据库,可以考虑使用数据库层面的锁,而在分布式场景下,需要保证多个应用实例都能够执行同步代码,则需要做一些额外的工作,一个最典型分布式同步方案便是使用分布式锁。

分布式锁由很多种实现,但本质上都是类似的,即依赖于共享组件实现锁的询问和获取,如果说单体式应用中的Monitor是由JVM提供的,那么分布式下Monitor便是由共享组件提供,而典型的共享组件大家其实并不陌生,包括但不限于:Mysql,Redis,Zookeeper。同时他们也代表了三种类型的共享组件:数据库,缓存,分布式协调组件。基于Consul的分布式锁,其实和基于Zookeeper的分布式锁大同小异,都是借助于分布式协调组件实现锁,大而化之,这三种类型的分布式锁,原理也都差不多,只不过,锁的特性和实现细节有所差异。

Redis实现分布式锁

定义需求:A应用需要完成添加库存的操作,部署了A1,A2,A3多个实例,实例之间的操作要保证同步。

分析需求:显然,此时依赖于JVM的lock已经没办法解决问题了,A1添加锁,无法保证A2,A3的同步,这种场景可以考虑使用分布式锁应对。

建立一张Stock表,包含id,number两个字段,分别让A1,A2,A3并发对其操作,保证线程安全。

@Entity
public class Stock {
    @Id
    private String id;
    private Integer number;
}

定义数据库访问层:

public interface StockRepository extends JpaRepository<Stock,String> {
}

这一节的主角,redis分布式锁,使用开源的redis分布式锁实现:Redisson。

引入Redisson依赖:

<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson</artifactId>
    <version>3.5.4</version>
</dependency>

定义测试类:

@RestController
public class StockController {
    @Autowired
    StockRepository stockRepository;
    ExecutorService executorService = Executors.newFixedThreadPool(10);
    @Autowired
    RedissonClient redissonClient;
    final static String id = "1";
    @RequestMapping("/addStock")
    public void addStock() {
        RLock lock = redissonClient.getLock("redisson:lock:stock:" + id);
        for (int i = 0; i < 100; i++) {
            executorService.execute(() -> {
                lock.lock();
                try {
                    Stock stock = stockRepository.findOne(id);
                    stock.setNumber(stock.getNumber() + 1);
                    stockRepository.save(stock);
                } finally {
                    lock.unlock();
                }
            });
        }
    }
}

上述的代码使得并发发生在多个层面。其一,在应用内部,启用线程池完成库存的加1操作,本身便是线程不安全的,其二,在多个应用之间,这样的加1操作更加是不受约束的。若初始化id为1的Stock数量为0。分别在本地启用A1(8080),A2(8081),A3(8082)三个应用,同时并发执行一次addStock(),若线程安全,必然可以使得数据库中的Stock为300,这便是我们的检测依据。

简单解读下上述的代码,使用redisson获取一把RLock,RLock是java.util.concurrent.locks.Lock接口的实现类,Redisson帮助我们屏蔽Redis分布式锁的实现细节,使用过java.util.concurrent.locks.Lock的朋友都会知道下述的代码可以被称得上是同步的起手范式,毕竟这是Lock的java doc中给出的代码:

Lock l = ...;
l.lock();
try {
   // access the resource protected by this lock
} finally {
  l.unlock();
}

而redissonClient.getLock(“redisson:lock:stock:” + id)则是以”redisson:lock:stock:” + id该字符串作痛同步的Monitor,保证了不同id之间是互相不阻塞的。

为了保证发生并发,实际测试中我加入了Thread.sleep(1000),使竞争得以发生。测试结果:

Redis分布式锁的确起了作用。

锁的注意点

如果仅仅是实现一个能够用于demo的Redis分布式锁并不难,但为何大家更偏向于使用开源的实现呢?主要还是可用性和稳定性,we make things work是我在写博客,写代码时牢记在脑海中的,如果真的要细究如何自己实现一个分布式锁,或者平时使用锁保证并发,需要有哪些注意点呢?列举几点:阻塞,超时时间,可重入,可用性,其他特性。

阻塞

意味着各个操作之间的等待,A1正在执行增加库存时,A1其他的线程被阻塞,A2,A3中所有的线程被阻塞,在Redis中可以使用轮询策略以及redis底层提供的CAS原语(如setnx)来实现。(初学者可以理解为:在redis中设置一个key,想要执行lock代码时先询问是否有该key,如果有则代表其他线程在执行过程中,若没有,则设置该key,并且执行代码,执行完毕,释放key,而setnx保证操作的原子性)

超时时间

在特殊情况,可能会导致锁无法被释放,如死锁,死循环等等意料之外的情况,锁超时时间的设置是有必要的,一个很直观的想法是给key设置过期时间即可。

如在Redisson中,lock提供了一个重载方法lock(long t, TimeUnit timeUnit);可以自定义过期时间。

可重入

这个特性很容易被忽视,可重入其实并不难理解,顾名思义,一个方法在调用过程中是否可以被再次调用。实现可重入需要满足三个特性:

  1. 可以在执行的过程中可以被打断;
  2. 被打断之后,在该函数一次调用执行完之前,可以再次被调用(或进入,reentered)。
  3. 再次调用执行完之后,被打断的上次调用可以继续恢复执行,并正确执行。

比如下述的代码引用了全局变量,便是不可重入的:

int t;
void swap(int x, int y) {
    t = x;
首页 上一页 1 2 下一页 尾页 1/2/2
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇SpringBoot 定时任务踩坑记录 下一篇什么是服务提供者框架

最新文章

热门文章

Hot 文章

Python

C 语言

C++基础

大数据基础

linux编程基础

C/C++面试题目