each cell of the table belongs to some tube. Help Valera to arrange k tubes on his rectangle table in a fancy manner.
Input The first line contains three space-separated integers n,?m,?k (2?≤?n,?m?≤?300; 2?≤?2k?≤?n?m) ― the number of rows, the number of columns and the number of tubes, correspondingly.
Output Print k lines. In the i-th line print the description of the i-th tube: first print integer ri (the number of tube cells), then print 2ri integersxi1,?yi1,?xi2,?yi2,?...,?xiri,?yiri (the sequence of table cells).
If there are multiple solutions, you can print any of them. It is guaranteed that at least one solution exists.
Sample test(s) input 3 3 3
output 3 1 1 1 2 1 3
3 2 1 2 2 2 3
3 3 1 3 2 3 3
input 2 3 1
output 6 1 1 1 2 1 3 2 3 2 2 2 1
Note Picture for the first sample:
Picture fZ??http://www.2cto.com/kf/ware/vc/" target="_blank" class="keylink">vciB0aGUgc2Vjb25kIHNhbXBsZTo8L3A+CjxjZW50ZXI+PGltZyBjbGFzcz0="tex-graphics" src="http://www.cppentry.com/upload_files/article/49/1_8lg6b__.png" alt="\">
模拟从第一个开始,蛇形输出,前k-1个输出两个格,最后一个将剩余的都输出。
//46 ms 0 KB
#include
int x[307],y[307];
int main()
{
int n,m,k;
while(scanf("%d%d%d",&n,&m,&k)!=EOF)
{
if(k>1)
{
int count=0,x,y,flag=0;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
{
if(count%2==0)printf("2");
count++;
if(i&1)printf(" %d %d",i,j);
else printf(" %d %d",i,m-j+1);
if(count%2==0)
{
printf("\n");
}
if(count==(k-1)*2)
{
x=i;
y=j;
flag=1;
break;
}
}
if(flag)break;
}
int a=m*n-count;
printf("%d",a);
for(int i=x; i<=n; i++)
{
for(int j=y+1; j<=m; j++)
{
if(i&1)printf(" %d %d",i,j);
else printf(" %d %d",i,m-j+1);
y=0;
}
y=0;
}
printf("\n");
}
else
{
printf("%d",n*m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(i&1)printf(" %d %d",i,j);
else printf(" %d %d",i,m-j+1);
printf("\n");
}
}
return 0;
}