题意:
给你一大波正方形左下角的点及其边长
实际上就是40W个点
然后求平面上最远两点的距离的平方
旋转卡壳模板题
//大白p263
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
const double eps=1e-10;//精度
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
int dcmp(double x){//判断double等于0或。。。
if(fabs(x) Polygon;
Vector operator+(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}//向量+向量=向量
Vector operator-(Point a,Point b){return Vector(a.x-b.x,a.y-b.y);}//点-点=向量
Vector operator*(Vector a,double p){return Vector(a.x*p,a.y*p);}//向量*实数=向量
Vector operator/(Vector a,double p){return Vector(a.x/p,a.y/p);}//向量/实数=向量
bool operator<( const Point& A,const Point& B ){return dcmp(A.x-B.x)<0||(dcmp(A.x-B.x)==0&&dcmp(A.y-B.y)<0);}
bool operator==(const Point&a,const Point&b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;}
bool operator!=(const Point&a,const Point&b){return a==b false:true;}
struct Segment{
Point a,b;
Segment(){}
Segment(Point _a,Point _b){a=_a,b=_b;}
bool friend operator<(const Segment& p,const Segment& q){return p.a0) return tempa-tempb;
else return tempa-tempb+2*PI;
}
double torad(double deg){return deg/180*PI;}//角度化为弧度
Vector Rotate(Vector a,double rad){//向量逆时针旋转rad弧度
return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
Vector Normal(Vector a){//计算单位法线
double L=Length(a);
return Vector(-a.y/L,a.x/L);
}
Point GetLineProjection(Point p,Point a,Point b){//点在直线上的投影
Vector v=b-a;
return a+v*(Dot(v,p-a)/Dot(v,v));
}
Point GetLineIntersection(Point p,Vector v,Point q,Vector w){//求直线交点 有唯一交点时可用
Vector u=p-q;
double t=Cross(w,u)/Cross(v,w);
return p+v*t;
}
int ConvexHull(Point* p,int n,Point* sol){//计算凸包
sort(p,p+n);
int m=0;
for(int i=0;i1&&Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2])<=0) m--;
sol[m++]=p[i];
}
int k=m;
for(int i=n-2;i>=0;i--){
while(m>k&&Cross(sol[m-1]-sol[m-2],p[i]-sol[m-2])<=0) m--;
sol[m++]=p[i];
}
if(n>0) m--;
return m;
}
double Heron(double a,double b,double c){//海伦公式
double p=(a+b+c)/2;
return sqrt(p*(p-a)*(p-b)*(p-c));
}
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){//线段规范相交判定
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1);
double c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
}
double CutConvex(const int n,Point* poly, const Point a,const Point b, vector result[3]){//有向直线a b 切割凸多边形
vector points;
Point p;
Point p1=a,p2=b;
int cur,pre;
result[0].clear();
result[1].clear();
result[2].clear();
if(n==0) return 0;
double tempcross;
tempcross=Cross(p2-p1,poly[0]-p1);
if(dcmp(tempcross)==0) pre=cur=2;
else if(tempcross>0) pre=cur=0;
else pre=cur=1;
for(int i=0;i0) cur=0;
else cur=1;
if(cur==pre){
result[cur].push_back(poly[(i+1)%n]);
}
else{
p1=poly[i];
p2=poly[(i+1)%n];
p=GetLineIntersection(p1,p2-p1,a,b-a);
points.push_back(p);
result[pre].push_back(p);
result[cur].push_back(p);
result[cur].push_back(poly[(i+1)%n]);
pre=cur;
}
}
sort(points.begin(),points.end());
if(points.size()<2){
return 0;
}
else{
return Length(points.front()-points.back());
}
}
double DistanceToSegment(Point p,Segment s){//点到线段的距离
if(s.a==s.b) return Length(p-s.a);
Vector v1=s.b-s.a,v2=p-s.a,v3=p-s.b;
if(dcmp(Dot(v1,v2))<0) return Length(v2);
else if(dcmp(Dot(v1,v3))>0) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
}
bool isPointOnSegment(Point p,Segment s){
return dcmp(Cross(s.a-p,s.b-p))==0&&dcmp(Dot(s.a-p,s.b-p))<0;
}
int isPointInPolygon(Point p, Point* poly,int n){//点与多边形的位置关系
int wn=0;
for(int i=0;i0&&d1<=0&&d2>0)wn++;
if(k<0&&d2<=0&&d1>0)wn--;
}
if(wn) return 1;//点在内部
else return 0;//点在外部
}
double PolygonArea(Point* p,int n){//多边形有向面积
double area=0;
for(int i=1;iCross(ch[q]-ch[p+1],ch[p]-ch[p+1]))
q=(q+1)%n;
ans=max(ans,max(Length(ch[p]-ch[q]),Length(ch[p+1]-ch[q+1])));
}
return ans;
}
Polygon CutPolygon(Polygon poly,Point a,Point b){//用a->b切割多边形 返回左侧
Polygon newpoly;
int n=poly.size();
for(int i=0;i=0) newpoly.push_back(c);
if(dcmp(Cross(b-a,c-d))!=0){
Point ip=GetLineIntersection(a,b-a,c,d-c);
if(isPointOnSe