|
] = true ;
d[u] = 0 ;
int tmp ;
Node v ;
while (!q.empty())
{
tmp = q.front() ;
q.pop() ;
inq[tmp] = false ;
int i ;
for(i = 0 ; i < vert[tmp].size() ; i ++)
{
v = vert[tmp][i] ;
if(d[tmp] != INF && d[tmp] + v.dis < d[v.adj])
{
d[v.adj] = d[tmp] + v.dis ;
if(!inq[v.adj])
{
q.push(v.adj) ;
inq[v.adj] = true ;
}
}
}
}
}
void solve()
{
memset(inq , 0 , sizeof(inq)) ;
int i , j ;
for(i = 1 ; i <= n ; i ++)
{
d[i] = INF ;
}
spfa(1) ;
double MAX = d[1] ;
int MAXb = 1 ;
for(i = 1 ; i <= n ; i ++)
{
if(MAX < d[i])
{
MAX = d[i] ;
MAXb = i ;
}
}
int pan = 0 ;
int t1 , t2 ;
for(i = 1 ; i <= n ; i ++) // 枚举每条边 , 更新MAX
{
for(j = 0 ; j < vert[i].size() ; j ++)
{
Node tn = vert[i][j] ;
int ta = tn.adj ;
double td = tn.dis ;
if((d[i] + d[ta] + td) / 2 > MAX ) // 注意:最大距离的求法
{
pan = 1 ;
MAX = (d[i] + d[ta] + td) / 2;
if(i < ta)
{
t1 = i ;
t2 = ta ;
}
else
{
t1 = ta ;
t2 = i ;
}
}
}
}
printf("The last domino falls after %.1f seconds," , MAX) ;
if(pan)
{
printf(" between key dominoes %d and %d.\n" , t1 , t2) ;
}
else
{
printf(" at key domino %d.\n" , MAXb) ;
}
puts("") ;
}
int ca ;
int main()
{
ca = 0 ;
while (scanf("%d%d" , &n , &m) != EOF)
{
if(n == 0 && m == 0)
break ;
init() ;
printf("System #%d\n" , ++ ca) ;
solve() ;
}
return 0 ;
}
|