设为首页 加入收藏

TOP

hdu - 3572 - Task(一)
2014-11-23 21:46:34 来源: 作者: 【 】 浏览:10
Tags:hdu 3572 Task
题意:有N个作业,M台机器,每个作业1天只能同1台机器运行,每台机器1天只能运行1个作业,第i个作业需要pi天完成,且只能从Si到Ei中选Pi天,问能否完成所有作业(T <= 20, N<=500, M<=200, 1 <= Pi, Si, Ei <= 500)。
——>>建图思路原来是这样子:设一个超级源s,每个作业为1个结点,从s往每个作业分别连1条边,容量为完成该作业所需的时间,那么从s发出满流时,就是作业所需天数,最后就看最大流是否为满流即可;作业可选择的天也分别作为1个结点,每个作业分别向其可选择的天连1条边,容量为1(因为每个作业1天只能同1台机器运行,每台机器1天只能运行1个作业);最后,所有可选择的天分别向超级汇t连1条边,容量为M(因为每天最多只有M台机器)~ok~
#include   
#include   
#include   
#include   
#include   
  
using namespace std;  
  
const int maxn = 1000 + 10;  
const int INF = 0x3f3f3f3f;  
  
int N, M;  
bool flag[maxn];  
  
struct Edge{  
    int u, v, cap, flow;  
    Edge(int u = 0, int v = 0, int cap = 0, int flow = 0):  
    u(u), v(v), cap(cap), flow(flow){}  
};  
  
struct Dinic{  
    vector edges;  
    vector G[maxn];  
    int m, s, t;  
    int d[maxn], cur[maxn];  
    bool vis[maxn];  
  
    void addEdge(int u, int v, int cap){  
        edges.push_back(Edge(u, v, cap, 0));  
        edges.push_back(Edge(v, u, 0, 0));  
        m = edges.size();  
        G[u].push_back(m-2);  
        G[v].push_back(m-1);  
    }  
  
    bool bfs(){  
        d[s] = 0;  
        memset(vis, 0, sizeof(vis));  
        queue qu;  
        qu.push(s);  
        vis[s] = 1;  
        while(!qu.empty()){  
            int u = qu.front(); qu.pop();  
            int sz = G[u].size();  
            for(int i = 0; i < sz; i++){  
                Edge& e = edges[G[u][i]];  
                if(!vis[e.v] && e.cap > e.flow){  
                    d[e.v] = d[u] + 1;  
                    vis[e.v] = 1;  
                    qu.push(e.v);  
                }  
            }  
        }  
        return vis[t];  
    }  
  
    int dfs(int u, int a){  
        if(u == t || a == 0) return a;  
        int f, flow = 0;  
        int sz = G[u].size();  
        for(int i = cur[u]; i < sz; i++){  
            Edge& e = edges[G[u][i]];  
            cur[u] = i;  
            if(d[e.v] == d[u] + 1 && (f = dfs(e.v, min(a, e.cap-e.flow))) > 0){  
                e.flow += f;  
                edges[G[u][i]^1].flow -= f;  
                flow += f;  
                a -= f;  
                if(!a) break;  
            }  
        }  
        return flow;  
    }  
  
    int Maxflow(int s, int t){  
        this->s = s;  
        this->t = t;  
        int flow = 0;  
        while(bfs()){  
            memset(cur, 0, sizeof(cur));  
            flow += dfs(s, INF);  
        }  
        return flow;  
    }  
  
};  
  
int main()  
{  
    int T, P, S, E, kase = 1;  
    scanf("%d", &T);  
    while(T--){  
        Dinic din;  
        scanf("%d%d", &N, &M);  
        memset(flag, 0, sizeof(flag));  
        int sum = 0;  
        for(int i = 1; i <= N; i++){  
            scanf("%d%d%d", &P, &S, &E);  
            din.addEdge(0, i, P);  
            for(int j = S; j <= E; j++){  
                din.addEdge(i, N+j, 1);  
                if(!flag[N+j]){  
                    din.addEdge(N+j, 1001, M);  
                    flag[N+j] = 1;  
                }  
            }  
            sum += P;  
        }  
        if(din.Maxflow(0, 1001) == sum) printf("Case %d: Yes\n\n", kase++);  
        else printf("Case %d: No\n\n", kase++);  
    }  
    return 0;  
}  

发现,以上的数据结构时空上都不如下面的数组写法:
#include   
#include   
#include   
#include   
  
using namespace std;  
  
const int maxn = 1000 + 10;  
const int maxm = 502000 + 10;  
const int INF = 0x3f3f3f3f;  
  
int head[maxn], nxt[maxm], ecnt, v[maxm], flow[maxm], cap[maxm];  
bool flag[maxn];  
int N, M;  
  
struct Dinic{  
    int m, s, t;  
    int d[maxn], cur[maxn];  
    bool vis[maxn];  
  
    Dinic(){  
        memset(head, -1, sizeof(head));  
        ecnt = 0;  
    }  
  
    void addEdge(int uu, int vv, int ca){  
        v[ecnt] = vv; cap[ecnt] = ca; flow[ecnt] = 0; nxt[ecnt] = head[uu]; head[uu] = ecnt; ecnt++;  
        v[ecnt] = uu; cap[ecnt] = 0; flow[ecnt] = 0; nxt[ecnt] = head[vv]; head[vv] = ecnt; ecnt++;  
    }  
  
    bool bfs(){  
        d[s] = 0;  
        memset(vis, 0, sizeof(vis));  
        queue qu;  
        qu.push(s);  
        vis[s] = 1;  
        while(!qu.empty()){  
            int u = qu.front(); qu.pop();  
            for(int e = head[u]; e != -1; e = nxt[e]){  
                if(!vis[v[e]] && cap[e] > flow[e]){  
                    d[v[e]] = d[u] + 1;  
                    vis[v[e]] = 1;  
                    qu.push(v[e]);  
                }  
            }  
        }  
        return vis[t];  
    }  
  
    int dfs(int u, int a){  
        if(u == t || a == 0) return a;  
        int f, Flow = 0;  
        for(int e = cur[u]; e != -1; e = nxt[e]){  
            cur[u] = e;  
            if(d[v[e]] == d[u] + 1 && (f = dfs(v[e], min(a, cap[e]-flow[e]))) > 0){  
                flow[e] += f;  
                flow[e^1] -= f;  
                Flow += f;  
                a -= f;  
                if(!a) break;  
            }  
        }  
        return Flow;  
    }  
  
    int Maxflow(int s, int t){  
        this->s = s;  
        this->t = t;  
        int Flow = 0;  
        while(bfs()){  
            memcpy(cur, head, sizeof(head));  
            Flow += dfs(s, INF);  
        }  
        return Flow;  
    }  
  
};  
  
int main()  
{  
    int T, P, S, E, kase = 1;  
    scanf("%d", &T);  
    while(T--){  
        Dinic din;  
        scanf("%d%d", &N, &M);  
        memset(flag, 0, sizeof(flag));  
        int sum = 0;  
        for(int i = 1; i <= N; i++){  
            scanf("%d%d%d", &P, &S, &E);  
            din.addEdge(0, i, P);  
            for(int j = S; j <= E; j++){  
                din.addEdge(i, N+j, 1);  
                if(!flag[N+j]){  
                    din.addEdge(N+j, 1001, M);  
                    flag[N+j] = 1;  
                }  
            }  
            sum += P;  
        }  
        if(din.Maxflow(0, 1001) == sum) printf("Case %d: Yes\n\n", kase++);  
        else printf("Case %d: No\n\n", kase++);  
    }  
    return 0;  
}  


首页 上一页 1 2 下一页 尾页 1/2/2
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇(step8.2.6)hdu 1848(Fibonacci a.. 下一篇 FZU-1921+线段树

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

·Redis压力测试实战 - (2025-12-27 09:20:24)
·高并发一上来,微服 (2025-12-27 09:20:21)
·Redis 高可用架构深 (2025-12-27 09:20:18)
·Linux 系统监控 的完 (2025-12-27 08:52:29)
·一口气总结,25 个 L (2025-12-27 08:52:27)