图论算法模板整理(二)
int iw[maxn]; // 最小入边的权值
int max_cid; // 最大圈编号
void init(int n) {
this->n = n;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++) w[i][j] = INF;
}
void AddEdge(int u, int v, int cost) {
w[u][v] = min(w[u][v], cost); // 重边取权最小的
}
// 从s出发能到达多少个结点
int dfs(int s) {
vis[s] = 1;
int ans = 1;
for(int i = 0; i < n; i++)
if(!vis[i] && w[s][i] < INF) ans += dfs(i);
return ans;
}
// 从u出发沿着pre指针找圈
bool cycle(int u) {
max_cid++;
int v = u;
while(cid[v] != max_cid) { cid[v] = max_cid; v = pre[v]; }
return v == u;
}
// 计算u的最小入弧,入弧起点不得在圈c中
void update(int u) {
iw[u] = INF;
for(int i = 0; i < n; i++)
if(!removed[i] && w[i][u] < iw[u]) {
iw[u] = w[i][u];
pre[u] = i;
}
}
// 根结点为s,如果失败则返回false
bool solve(int s) {
memset(vis, 0, sizeof(vis));
if(dfs(s) != n) return false;
memset(removed, 0, sizeof(removed));
memset(cid, 0, sizeof(cid));
for(int u = 0; u < n; u++) update(u);
pre[s] = s; iw[s] = 0; // 根结点特殊处理
ans = max_cid = 0;
for(;;) {
bool have_cycle = false;
for(int u = 0; u < n; u++) if(u != s && !removed[u] && cycle(u)){
have_cycle = true;
// 以下代码缩圈,圈上除了u之外的结点均删除
int v = u;
do {
if(v != u) removed[v] = 1;
ans += iw[v];
// 对于圈外点i,把边i->v改成i->u(并调整权值);v->i改为u->i
// 注意圈上可能还有一个v'使得i->v'或者v'->i存在,因此只保留权值最小的i->u和u->i
for(int i = 0; i < n; i++) if(cid[i] != cid[u] && !removed[i]) {
if(w[i][v] < INF) w[i][u] = min(w[i][u], w[i][v]-iw[v]);
w[u][i] = min(w[u][i], w[v][i]);
if(pre[i] == v) pre[i] = u;
}
v = pre[v];
} while(v != u);
update(u);
break;
}
if(!have_cycle) break;
}
for(int i = 0; i < n; i++)
if(!removed[i]) ans += iw[i];
return true;
}
};
//KM
int W[maxn][maxn], n;
int Lx[maxn], Ly[maxn]; // 顶标
int left[maxn]; // left[i]为右边第i个点的匹配点编号
bool S[maxn], T[maxn]; // S[i]和T[i]为左/右第i个点是否已标记
bool match(int i){
S[i] = true;
for(int j = 1; j <= n; j++) if (Lx[i]+Ly[j] == W[i][j] && !T[j]){
T[j] = true;
if (!left[j] || match(left[j])){
left[j] = i;
return true;
}
}
return false;
}
void update(){
int a = INF;
for(int i = 1; i <= n; i++) if(S[i])
for(int j = 1; j <= n; j++) if(!T[j])
a = min(a, Lx[i]+Ly[j] - W[i][j]);
for(int i = 1; i <= n; i++) {
if(S[i]) Lx[i] -= a;
if(T[i]) Ly[i] += a;
}
}
void KM() {
for(int i = 1; i <= n; i++) {
left[i] = Lx[i] = Ly[i] = 0;
for(int j = 1; j <= n; j++)
Lx[i] = max(Lx[i], W[i][j]);
}
for(int i = 1; i <= n; i++) {
for(;;) {
for(int j = 1; j <= n; j++) S[j] = T[j] = false;
if(match(i)) break; else update();
}
}
}
// 二分图最大基数匹配,邻接矩阵写法
struct BPM
{
int n, m; // 左右顶点个数
int G[maxn][maxn]; // 邻接表
int left[maxn]; // left[i]为右边第i个点的匹配点编号,-1表示不存在
bool T[maxn]; // T[i]为右边第i个点是否已标记
void init(int n, int m) {
this->n = n;
this->m = m;
memset(G, 0, sizeof(G));
}
bool match(int u){
for(int v = 0; v < m; v++) if(G[u][v] && !T[v]) {
T[v] = true;
if (left[v] == -1 || match(left[v])){
left[v] = u;
return true;
}
}
return false;
}
// 求最大匹配
int solve() {
memset(left, -1, sizeof(left));
int ans = 0;
for(int u = 0; u < n; u++) { // 从左边结点u开始增广
memset(T, 0, sizeof(T));
if(match(u)) ans++;
}
return ans;
}
};
// 二分图最大基数匹配求覆盖集
struct BPM {
int n, m; // 左右顶点个数
vector G[maxn]; // 邻接表
int left[maxn]; // left[i]为右边第i个点的匹配点编号,-1表示不存在
bool T[maxn]; // T[i]为右边第i个点是否已标记
int right[maxn]; // 求最小覆盖用
bool S[maxn]; // 求最小覆盖用
void init(int n, int m) {
this->n = n;
this->m = m;
for(int i = 0; i < n; i++) G[i].clear();
}
void AddEdge(int u, int v) {
G[u].push_back(v);
}
bool match(int u){
S[u] = true;
for(int i = 0; i < G[u].size(); i++) {
int v = G[u][i];
if (!T[v]){
T[v] = true;
if (left[v] == -1 || match(left[v])){
left[v] = u;
right[u] = v;
return true;
}
}
}
return false;
}
// 求最大匹配
int solve() {
memset(left, -1, sizeof(left));
memset(right, -1, sizeof(right));
int ans = 0;
for(int u = 0; u < n; u++) { // 从左边结点u开始增广
memset(S, 0, sizeof(S));
memset(T, 0, sizeof(T));
if(match(u)) ans++;
}
return ans;
}
// 求最小覆盖。X和Y为最小覆盖中的点集
int mincover(vector& X, vector& Y) {
int ans = solve();
memset(S, 0, sizeof(S));
memset(T, 0, sizeof(T));
for(int u = 0; u < n; u++)
if(right[u] == -1) match(u); // 从所有X未盖点出发增广
for(int u = 0; u < n; u++)
if(!S[u]) X.push_back(u); // X中的未标记点
for(int v = 0; v < m; v++)
if(T[v]) Y.push_back(v); // Y中的已标记点
return ans;
}
};
//ISAP
struct Edge {
int from, to, cap, flow;
};
bool operator < (const Edge& a, const Edge& b) {
return a.from < b.from || (a.from == b.from && a.to < b.to);
}
struct ISAP {
int n, m, s, t;
vector edges;
vector G[maxn]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[maxn]; // BFS使用
int d[maxn]; // 从起点到i的距离
int cur[maxn]; // 当前弧指针
int p[maxn]; // 可增广路上的上一条弧
int num[maxn]; // 距离标号计数
void AddEdge(int from, int to, int cap) {
edges.push_back((Edge){from, to, cap, 0});
edges.push_back((Edge){to, from, 0, 0});
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue
Q;
Q.push(t);
vis[t] = 1;
d[t] = 0;
while(!Q.empty()) {
int x = Q.front(); Q.pop();
for(int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]^1];
if(!vis[e.from] && e.cap > e.flow) {
vis[e.from] = 1;
d[e.from] = d[x] + 1;
Q.push(e.from);
}
}
}
return vis[s];
}
void ClearAll(int n) {
this->n = n;
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
}
void ClearFlow() {
for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;
}
int Augment() {
int x = t, a = INF;
while(x != s) {
Edge& e = edges[p[x]];
a = min(a, e.cap-e.flow);
x = edges[p[x]].from;
}
x = t;
while(x != s) {
edges[p[x]].flow += a;
edges[p[x]^1].flow -= a;
x = edges[p[x]].from;
}
return a;
}
int Maxflow(int s, int t, int need) {
this->s = s; this->t = t;
int flow = 0;
BFS();
memset(num, 0, sizeof(num));
for(int i = 0; i < n; i++) num[d[i]]++;
int x = s;
memset(cur, 0, sizeof(cur));
while(d[s] < n) {
if(x == t) {
flow += Augment();
if(flow >= need) return flow;
x = s;
}
int ok = 0;
for(int i = cur[x]; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(e.cap > e.flow && d[x] == d[e.to] + 1) { // Advance
ok = 1;
p[e.to] = G[x][i];
cur[x] = i; // 注意
x = e.to;
break;
}
}
if(!ok) { // Retreat
int m = n-1; // 初值注意
for(int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(e.cap > e.flow) m = min(m, d[e.to]);
}
if(--num[d[x]] == 0) break;
num[d[x] = m+1]++;
cur[x] = 0; // 注意
if(x != s) x = edges[p[x]].from;
}
}
return flow;
}
vector Mincut() { // call this after maxflow
BFS();
vector ans;
for(int i = 0; i < edges.size(); i++) {
Edge& e = edges[i];
if(!vis[e.from] && vis[e.to] && e.cap > 0) ans.push_back(i);
}
return ans;
}
void Reduce() {
for(int i = 0; i < edges.size(); i++) edges[i].cap -= edges[i].flow;
}
void print() {
printf("Graph:\n");
for(int i = 0; i < edges.size(); i++)
printf("%d->%d, %d, %d\n", edges[i].from, edges[i].to , edges[i].cap, edges[i].flow);
}
};
//Dinic
struct Edge {
int from, to, cap, flow;
};
bool operator < (const Edge& a, const Edge& b) {
return a.from < b.from || (a.from == b.from && a.to < b.to);
}
struct Dinic {
int n, m, s, t;
vector edges; // 边数的两倍
vector G[maxn]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[maxn]; // BFS使用
int d[maxn]; // 从起点到i的距离
int cur[maxn]; // 当前弧指针
void ClearAll(int n) {
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
}
void ClearFlow() {
for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;
}
void AddEdge(int from, int to, int cap) {
edges.push_back((Edge){from, to, cap, 0});
edges.push_back((Edge){to, from, 0, 0});
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue Q;
Q.push(s);
vis[s] = 1;
d[s] = 0;
while(!Q.empty()) {
int x = Q.front(); Q.pop();
for(int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(!vis[e.to] && e.cap > e.flow) {
vis[e.to] = 1;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a) {
if(x == t || a == 0) return a;
int flow = 0, f;
for(int& i = cur[x]; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) {
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
}
int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = 0;
while(BFS()) {
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF);
}
return flow;
}
};
//MCMF
struct Edge {
int from, to, cap, flow, cost;
};
struct MCMF {
int n, m, s, t;
vector edges;
vector G[maxn];
int inq[maxn]; // 是否在队列中
int d[maxn]; // Bellman-Ford
int p[maxn]; // 上一条弧
int a[maxn]; // 可改进量
void init(int n) {
this->n = n;
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap, int cost) {
edges.push_back((Edge){from, to, cap, 0, cost});
edges.push_back((Edge){to, from, 0, 0, -cost});
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BellmanFord(int s, int t, LL& ans) {
for(int i = 0; i < n; i++) d[i] = INF;
memset(inq, 0, sizeof(inq));
d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
queue Q;
Q.push(s);
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = 0;
for(int i = 0; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if(e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if(!inq[e.to]) { Q.push(e.to); inq[e.to] = 1; }
}
}
}
if(d[t] == INF) return false;//s-t不连通 失败退出
if(d[t] > 0) return false;//不固定流量的最小费用流
ans += (LL)d[t] * (LL)a[t];
int u = t;
while