二项堆(三)之 Java的实现(二)
8 root = merge(h1, h2);
9 if (root == null)
10 return null;
11
12 BinomialNode prev_x = null;
13 BinomialNode x = root;
14 BinomialNode next_x = x.next;
15 while (next_x != null) {
16
17 if ( (x.degree != next_x.degree)
18 || ((next_x.next != null) && (next_x.degree == next_x.next.degree))) {
19 // Case 1: x.degree != next_x.degree
20 // Case 2: x.degree == next_x.degree == next_x.next.degree
21 prev_x = x;
22 x = next_x;
23 } else if (x.key.compareTo(next_x.key) <= 0) {
24 // Case 3: x.degree == next_x.degree != next_x.next.degree
25 // && x.key <= next_x.key
26 x.next = next_x.next;
27 link(next_x, x);
28 } else {
29 // Case 4: x.degree == next_x.degree != next_x.next.degree
30 // && x.key > next_x.key
31 if (prev_x == null) {
32 root = next_x;
33 } else {
34 prev_x.next = next_x;
35 }
36 link(x, next_x);
37 x = next_x;
38 }
39 next_x = x.next;
40 }
41
42 return root;
43 }
44
45 /*
46 * 将二项堆other合并到当前堆中
47 */
48 public void union(BinomialHeap other) {
49 if (other!=null && other.mRoot!=null)
50 mRoot = union(mRoot, other.mRoot);
51 }
复制代码
合并函数combine(h1, h2)的作用是将h1和h2合并,并返回合并后的二项堆。在combine(h1, h2)中,涉及到了两个函数merge(h1, h2)和link(child, root)。
merge(h1, h2)就是我们前面所说的"两个二项堆的根链表合并成一个链表,合并后的新链表按照'节点的度数'单调递增排序"。
link(child, root)则是为了合并操作的辅助函数,它的作用是将"二项堆child的根节点"设为"二项堆root的左孩子",从而将child整合到root中去。
在combine(h1, h2)中对h1和h2进行合并时;首先通过 merge(h1, h2) 将h1和h2的根链表合并成一个"按节点的度数单调递增"的链表;然后进入while循环,对合并得到的新链表进行遍历,将新链表中"根节点度数相同的二项树"连接起来,直到所有根节点度数都不相同为止。在将新联表中"根节点度数相同的二项树"连接起来时,可以将被连接的情况概括为4种。
x是根链表的当前节点,next_x是x的下一个(兄弟)节点。
Case 1: x->degree != next_x->degree
即,"当前节点的度数"与"下一个节点的度数"相等时。此时,不需要执行任何操作,继续查看后面的节点。
Case 2: x->degree == next_x->degree == next_x->next->degree
即,"当前节点的度数"、"下一个节点的度数"和"下下一个节点的度数"都相等时。此时,暂时不执行任何操作,还是继续查看后面的节点。实际上,这里是将"下一个节点"和"下下一个节点"等到后面再进行整合连接。
Case 3: x->degree == next_x->degree != next_x->next->degree
&& x->key <= next_x->key
即,"当前节点的度数"与"下一个节点的度数"相等,并且"当前节点的键值"<="下一个节点的度数"。此时,将"下一个节点(对应的二项树)"作为"当前节点(对应的二项树)的左孩子"。
Case 4: x->degree == next_x->degree != next_x->next->degree
&& x->key > next_x->key
即,"当前节点的度数"与"下一个节点的度数"相等,并且"当前节点的键值">"下一个节点的度数"。此时,将"当前节点(对应的二项树)"作为"下一个节点(对应的二项树)的左孩子"。
下面通过示意图来对合并操作进行说明。
第1步:将两个二项堆的根链表合并成一个链表
执行完第1步之后,得到的新链表中有许多度数相同的二项树。实际上,此时得到的是对应"Case 4"的情况,"树41"(根节点为41的二项树)和"树13"的度数相同,且"树41"的键值 > "树13"的键值。此时,将"树41"作为"树13"的左孩子。
第2步:合并"树41"和"树13"
执行完第2步之后,得到的是对应"Case 3"的情况,"树13"和"树28"的度数相同,且"树13"的键值 < "树28"的键值。此时,将"树28"作为"树13"的左孩子。
第3步:合并"树13"和"树28"
执行完第3步之后,得到的是对应"Case 2"的情况,"树13"、"树28"和"树7"这3棵树的度数都相同。此时,将x设为下一个节点。
第4步:将x和next_x往后移
执行完第4步之后,得到的是对应"Case 3"的情况,"树7"和"树11"的度数相同,且"树7"的键值 < "树11"的键值。此时,将"树11"作为"树7"的左孩子。
第5步:合并"树7"和"树11"
执行完第5步之后,得到的是对应"Case 4"的情况,"树7"和"树6"的度数相同,且"树7"的键值 > "树6"的键值。此时,将"树7"作为"树6"的左孩子。
第6步:合并"树7"和"树6"
此时,合并操作完成!
PS. 合并操作的图文解析过程与"测试程序(Main.java)中的testUnion()函数"是对应的!
3. 插入操作
理解了"合并"操作之后,插入操作就相当简单了。插入操作可以看作是将"要插入的节点"和当前已有的堆进行合并。
插入操作代码(Java)
复制代码
1 /*
2 * 新建key对应的节点,并将其插入到二项堆中。
3 */