/***********基础*************/
struct Point3 {
double x, y, z;
Point3(double x=0, double y=0, double z=0):x(x),y(y),z(z) { }
};
typedef Point3 Vector3;
Vector3 operator + (const Vector3& A, const Vector3& B) { return Vector3(A.x+B.x, A.y+B.y, A.z+B.z); }
Vector3 operator - (const Point3& A, const Point3& B) { return Vector3(A.x-B.x, A.y-B.y, A.z-B.z); }
Vector3 operator * (const Vector3& A, double p) { return Vector3(A.x*p, A.y*p, A.z*p); }
Vector3 operator / (const Vector3& A, double p) { return Vector3(A.x/p, A.y/p, A.z/p); }
double Dot(const Vector3& A, const Vector3& B) { return A.x*B.x + A.y*B.y + A.z*B.z; }
double Length(const Vector3& A) { return sqrt(Dot(A, A)); }
double Angle(const Vector3& A, const Vector3& B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
Vector3 Cross(const Vector3& A, const Vector3& B) { return Vector3(A.y*B.z - A.z*B.y, A.z*B.x - A.x*B.z, A.x*B.y - A.y*B.x); }
double Area2(const Point3& A, const Point3& B, const Point3& C) { return Length(Cross(B-A, C-A)); }
double Volume6(const Point3& A, const Point3& B, const Point3& C, const Point3& D) { return Dot(D-A, Cross(B-A, C-A)); }
// 四面体的重心
Point3 Centroid(const Point3& A, const Point3& B, const Point3& C, const Point3& D) { return (A + B + C + D)/4.0; }
/************点线面*************/
// 点p到平面p0-n的距离。n必须为单位向量
double DistanceToPlane(const Point3& p, const Point3& p0, const Vector3& n) {
return fabs(Dot(p-p0, n)); // 如果不取绝对值,得到的是有向距离
}
// 点p在平面p0-n上的投影。n必须为单位向量
Point3 GetPlaneProjection(const Point3& p, const Point3& p0, const Vector3& n) {
return p-n*Dot(p-p0, n);
}
//直线p1-p2 与平面p0-n的交点
Point3 LinePlaneIntersection(Point3 p1, Point3 p2, Point3 p0, Vector3 n)
{
vector3 = p2-p1;
double t = (Dot(n, p0-p1) / Dot(n, p2-p1));//分母为0,直线与平面平行或在平面上
return p1 + v*t; //如果是线段 判断t是否在0~1之间
}
// 点P到直线AB的距离
double DistanceToLine(const Point3& P, const Point3& A, const Point3& B) {
Vector3 v1 = B - A, v2 = P - A;
return Length(Cross(v1, v2)) / Length(v1);
}
//点到线段的距离
double DistanceToSeg(Point3 p, Point3 a, Point3 b)
{
if(a == b) return Length(p-a);
Vector3 v1 = b-a, v2 = p-a, v3 = p-b;
if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
else if(dcmp(Dot(v1, v3)) >
0) return Length(v3);
else return Length(Cross(v1, v2)) / Length(v1);
}
//求异面直线 p1+s*u与p2+t*v的公垂线对应的s 如果平行|重合,返回false
bool LineDistance3D(Point3 p1, Vector3 u, Point3 p2, Vector3 v, double& s)
{
double b = Dot(u, u) * Dot(v, v) - Dot(u, v) * Dot(u, v);
if(dcmp(b) == 0) return false;
double a = Dot(u, v) * Dot(v, p1-p2) - Dot(v, v) * Dot(u, p1-p2);
s = a/b;
return true;
}
// p1和p2是否在线段a-b的同侧
bool SameSide(const Point3& p1, const Point3& p2, const Point3& a, const Point3& b) {
return dcmp(Dot(Cross(b-a, p1-a), Cross(b-a, p2-a))) >= 0;
}
// 点P在三角形P0, P1, P2中
bool PointInTri(const Point3& P, const Point3& P0, const Point3& P1, const Point3& P2) {
return SameSide(P, P0, P1, P2) && SameSide(P, P1, P0, P2) && SameSide(P, P2, P0, P1);
}
// 三角形P0P1P2是否和线段AB相交
bool TriSegIntersection(const Point3& P0, const Point3& P1, const Point3& P2, const Point3& A, const Point3& B, Point3& P) {
Vector3 n = Cross(P1-P0, P2-P0);
if(dcmp(Dot(n, B-A)) == 0) return false; // 线段A-B和平面P0P1P2平行或共面
else { // 平面A和直线P1-P2有惟一交点
double t = Dot(n, P0-A) / Dot(n, B-A);
if(dcmp(t) < 0 || dcmp(t-1) > 0) return false; // 不在线段AB上
P = A + (B-A)*t; // 交点
return PointInTri(P, P0, P1, P2);
}
}
//空间两三角形是否相交
bool TriTriIntersection(Point3* T1, Point3* T2) {
Point3 P;
for(