三维计算几何模板整理(二)

2014-11-23 23:30:15 · 作者: · 浏览: 18
int i = 0; i < 3; i++) { if(TriSegIntersection(T1[0], T1[1], T1[2], T2[i], T2[(i+1)%3], P)) return true; if(TriSegIntersection(T2[0], T2[1], T2[2], T1[i], T1[(i+1)%3], P)) return true; } return false; } //空间两直线上最近点对 返回最近距离 点对保存在ans1 ans2中 double SegSegDistance(Point3 a1, Point3 b1, Point3 a2, Point b2) { Vector v1 = (a1-b1), v2 = (a2-b2); Vector N = Cross(v1, v2); Vector ab = (a1-a2); double ans = Dot(N, ab) / Length(N); Point p1 = a1, p2 = a2; Vector d1 = b1-a1, d2 = b2-a2; double t1, t2; t1 = Dot((Cross(p2-p1, d2)), Cross(d1, d2)); t2 = Dot((Cross(p2-p1, d1)), Cross(d1, d2)); double dd = Length((Cross(d1, d2))); t1 /= dd*dd; t2 /= dd*dd; ans1 = (a1 + (b1-a1)*t1); ans2 = (a2 + (b2-a2)*t2); return fabs(ans); } // 判断P是否在三角形A, B, C中,并且到三条边的距离都至少为mindist。保证P, A, B, C共面 bool InsideWithMinDistance(const Point3& P, const Point3& A, const Point3& B, const Point3& C, double mindist) { if(!PointInTri(P, A, B, C)) return false; if(DistanceToLine(P, A, B) < mindist) return false; if(DistanceToLine(P, B, C) < mindist) return false; if(DistanceToLine(P, C, A) < mindist) return false; return true; } // 判断P是否在凸四边形ABCD(顺时针或逆时针)中,并且到四条边的距离都至少为mindist。保证P, A, B, C, D共面 bool InsideWithMinDistance(const Point3& P, const Point3& A, const Point3& B, const Point3& C, const Point3& D, double mindist) { if(!PointInTri(P, A, B, C)) return false; if(!PointInTri(P, C, D, A)) return false; if(DistanceToLine(P, A, B) < mindist) return false; if(DistanceToLine(P, B, C) < mindist) return false; if(DistanceToLine(P, C, D) < mindist) return false; if(DistanceToLine(P, D, A) < mindist) return false; return true; } /*************凸包相关问题*******************/ //加干扰 double rand01() { return rand() / (double)RAND_MAX; } double randeps() { return (rand01() - 0.5) * eps; } Point3 add_noise(const Point3& p) { return Point3(p.x + randeps(), p.y + randeps(), p.z + randeps()); } struct Face { int v[3]; Face(int a, int b, int c) { v[0] = a; v[1] = b; v[2] = c; } Vector3 Normal(const vector
& P) const { return Cross(P[v[1]]-P[v[0]], P[v[2]]-P[v[0]]); } // f是否能看见P[i] int CanSee(const vector& P, int i) const { return Dot(P[i]-P[v[0]], Normal(P)) > 0; } }; // 增量法求三维凸包 // 注意:没有考虑各种特殊情况(如四点共面)。实践中,请在调用前对输入点进行微小扰动 vector CH3D(const vector& P) { int n = P.size(); vector > vis(n); for(int i = 0; i < n; i++) vis[i].resize(n); vector cur; cur.push_back(Face(0, 1, 2)); // 由于已经进行扰动,前三个点不共线 cur.push_back(Face(2, 1, 0)); for(int i = 3; i < n; i++) { vector next; // 计算每条边的“左面”的可见性 for(int j = 0; j < cur.size(); j++) { Face& f = cur[j]; int res = f.CanSee(P, i); if(!res) next.push_back(f); for(int k = 0; k < 3; k++) vis[f.v[k]][f.v[(k+1)%3]] = res; } for(int j = 0; j < cur.size(); j++) for(int k = 0; k < 3; k++) { int a = cur[j].v[k], b = cur[j].v[(k+1)%3]; if(vis[a][b] != vis[b][a] && vis[a][b]) // (a,b)是分界线,左边对P[i]可见 next.push_back(Face(a, b, i)); } cur = next; } return cur; } struct ConvexPolyhedron { int n; vector P, P2; vector faces; bool read() { if(scanf("%d", &n) != 1) return false; P.resize(n); P2.resize(n); for(int i = 0; i < n; i++) { P[i] = read_point3(); P2[i] = add_noise(P[i]); } faces = CH3D(P2); return true; } //三维凸包重心 Point3 centroid() { Point3 C = P[0]; double totv = 0; Point3 tot(0,0,0); for(int i = 0; i < faces.size(); i++) { Point3 p1 = P[faces[i].v[0]], p2 = P[faces[i].v[1]], p3 = P[faces[i].v[2]]; double v = -Volume6(p1, p2, p3, C); totv += v; tot = tot + Centroid(p1, p2, p3, C)*v; } return tot / totv; } //凸包重心到表面最近距离 double mindist(Point3 C) { double ans = 1e30; for(int i = 0; i < faces.size(); i++) { Point3 p1 = P[faces[i].v[0]], p2 = P[faces[i].v[1]], p3 = P[faces[i].v[2]]; ans = min(ans, fabs(-Volume6(p1, p2, p3, C) / Area2(p1, p2, p3))); } return ans; } };