printf("%d\n", pTreeNode->data);
print_all_node_data(pTreeNode->right_child);
}
}
void print_all_node_data(const TREE_NODE* pTreeNode)
{
if(pTreeNode){
print_all_node_data(pTreeNode->left_child);
printf("%d\n", pTreeNode->data);
print_all_node_data(pTreeNode->right_child);
}
} 分析:因为二叉树本身的特殊性,按顺序打印二叉树的函数本身也比较简单。首先打印左子树的节点,然后打印本节点的数值,最后打印右子树节点的数值,这样所有节点的数值就都可以打印出来了。
5)统计树的高度
int calculate_height_of_tree(const TREE_NODE* pTreeNode)
{
int left, right;
if(NULL == pTreeNode)
return 0;
left = calculate_height_of_tree(pTreeNode->left_child);
right = calculate_height_of_tree(pTreeNode->right_child);
return (left > right) (left + 1) : (right + 1);
}
int calculate_height_of_tree(const TREE_NODE* pTreeNode)
{
int left, right;
if(NULL == pTreeNode)
return 0;
left = calculate_height_of_tree(pTreeNode->left_child);
right = calculate_height_of_tree(pTreeNode->right_child);
return (left > right) (left + 1) : (right + 1);
} 分析:树的高度其实是指所有叶子节点中,从根节点到叶子节点的最大高度可以达到多少。当然,程序中表示得已经很明白了,如果节点为空,那么很遗憾,节点的高度为0;反之如果左子树的高度大于右子树的高度,那么整个二叉树的节点高度就是左子树的高度加上1;如果右子树的高度大于左子树的高度,那么整个二叉树的高度就是右子树的高度加上1。计算树的高度在我们设计平衡二叉树的时候非常有用,特别是测试的时候,希望大家多多理解,熟练掌握。
总结:
1)二叉树是所有树的基础,后续的平衡二叉树、线性二叉树、红黑树、复合二叉树、b树、b+树都以此为基础,希望大家好好学习;
2)二叉树很多的操作是和堆栈紧密联系在一起的,如果大家暂时理解不了递归,可以用循环或者堆栈代替;
3)实践出真知,大家可以自己对排序二叉树的代码多多练习。不瞒大家说,我个人写平衡二叉树不下20多遍,即使这样也不能保证每次都正确;即使这样,我每次写代码的都有不同的感觉。