manNode[0]->symbol = 1;
huffmanNode[1]->parent = head;
huffmanNode[1]->symbol = 0;
memmove(&huffmanNode[0], &huffmanNode[2], sizeof(HUFFMAN_NODE*) * (length -2));
huffmanNode[length -2] = head;
length --;
}
return head;
} 上面的代码完整了写出了huffman树的创建过程,那么我们怎么知道符号的编码是多少呢?这其实不难,因为根节点都知道了,我们只要按照自下而上的顺序遍历节点就可以打印出编码,只不过编码是逆序的而已,
void print_code_for_str(HUFFMAN_NODE* pNode, HUFFMAN_NODE* head)
{
if(NULL == pNode || NULL == head)
return;
while(head != pNode){
printf("%d", pNode->symbol);
pNode = pNode->parent;
}
return;
}
void print_code_for_str(HUFFMAN_NODE* pNode, HUFFMAN_NODE* head)
{
if(NULL == pNode || NULL == head)
return;
while(head != pNode){
printf("%d", pNode->symbol);
pNode = pNode->parent;
}
return;
}
如果对代码本身还有怀疑,可以编译一个测试用例验证一下,
void test()
{
HUFFMAN_NODE* node1 = NULL;
HUFFMAN_NODE* node2 = NULL;
HUFFMAN_NODE* node3 = NULL;
HUFFMAN_NODE* node4 = NULL;
HUFFMAN_NODE* test[] = {node1 = create_new_node('a', 0.1),
node2 = create_new_node('b', 0.2),
node3 = create_new_node('c', 0.3),
node4 = create_new_node('d', 0.4),
};
HUFFMAN_NODE* head = create_huffman_tree(test, sizeof(test)/sizeof(HUFFMAN_NODE*));
print_code_for_str(node1, head);
print_code_for_str(node2, head);
print_code_for_str(node3, head);
print_code_for_str(node4, head);
}
void test()
{
HUFFMAN_NODE* node1 = NULL;
HUFFMAN_NODE* node2 = NULL;
HUFFMAN_NODE* node3 = NULL;
HUFFMAN_NODE* node4 = NULL;
HUFFMAN_NODE* test[] = {node1 = create_new_node('a', 0.1),
node2 = create_new_node('b', 0.2),
node3 = create_new_node('c', 0.3),
node4 = create_new_node('d', 0.4),
};
HUFFMAN_NODE* head = create_huffman_tree(test, sizeof(test)/sizeof(HUFFMAN_NODE*));
print_code_for_str(node1, head);
print_code_for_str(node2, head);
print_code_for_str(node3, head);
print_code_for_str(node4, head);
}
总结:
(1)哈夫曼树不复杂,如果手算可以成功,那么编程应该也没有什么问题
(2)复杂算法都是由小算法搭积木而成的,朋友们应该在基本算法上打下坚实的基础
(3)算法注意复用,这里就用到了原来讲到的通用算法内容