杭电OJ――1007 Quoit Design(最近点对问题) (二)

2014-11-24 00:36:52 · 作者: · 浏览: 7
s;
if (num[i].x <= rightCoord)
{
c[p].index = R; /*标识属于右边部分*/
c[p].x = num[i].x;
c[p].y = num[i].y;
p++;
}
}
sort(c, c + p, cmpy); /*找到的点再从小到大按照y排序一次*/
for (i = 0; i < p; i++)
{
if (c[i].index == L) /*左边的点一个一个地搜索,按照规律,我们只要搜索之后的7个点就可以了*/
{
for (j = 1; (j <= 7) && (i + j < p); j++)
{
if (c[i + j].index == R) /*这个点还必须属于右边*/
{
min = getDistance(c[i], c[i + j]);
if(min < dis)
{
dis = min;
}
}
}
}
}
}
return dis;
}


int main ()
{
int n;
while (cin >> n && n != 0)
{
double result = 0;

for (int i = 0; i < n; i++)
{
num[i].index = 0;
cin >> num[i].x >> num[i].y;
}

sort (num, num + n, cmpx);

result = divide_conquer(0, n - 1);

printf("%.2lf\n", result / 2);
}
//system ("pause");
return 0;
}

/*
*最近点对的问题
*/

#include
#include
#include
using namespace std;
const int SIZE = 100005;
const int L = -1;
const int R = 1;

typedef struct
{
int index;
double x;
double y; /*用于记录坐标点*/
}coord;

coord num[SIZE], c[SIZE]/*用作辅助数组*/;

double getDistance(coord &bi1, coord &bi2) /*求得两点之间的距离*/
{
return sqrt(pow(bi1.x - bi2.x, 2.0) + pow(bi1.y - bi2.y, 2.0));
}

bool cmpx(coord &bi1, coord &bi2)
{
if (bi1.x == bi1.x)
return bi1.y < bi2.y;
else
return bi1.x < bi2.x;
}

bool cmpy(coord &bi1, coord &bi2)
{
if (bi1.y == bi2.y)
return bi1.x < bi2.x;
else
return bi1.y < bi2.y;
}

inline double min(double &bi1, double &bi2, double &bi3)
{
double minLength;
minLength = bi1 > bi2 bi2 : bi1;
minLength = minLength > bi3 bi3 : minLength;
return minLength;
}

inline double minDist(double &bi1, double &bi2)
{
if (bi1 > bi2)
return bi2;
return bi1;
}


double divide_conquer(int low, int high) /*分治法求最小距离*/
{
double dis;
int count = high - low;
if (count == 0)
{
return 0;
}
else if (count == 1) /*两个数*/
{
dis = getDistance(num[low], num[high]);
}
else if (count == 2) /*三个数*/
{
double temp1, temp2, temp3;
temp1 = getDistance(num[low], num[low + 1]);
temp2 = getDistance(num[low + 1], num[high]);
temp3 = getDistance(num[low], num[high]);
dis = min(temp1, temp2, temp3);
}
else /*大于三个数的情况*/
{
double leftmin, rightmin, min;
int mid = (low + high) / 2;
int p = 0;
int i, j;

leftmin = divide_conquer(low, mid); /*求得左边部分的最小值*/
rightmin = divide_conquer(mid + 1, high); /*求得右边部分的最小值*/
dis = minDist(leftmin, rightmin);

/*下面从所有坐标点中找出所有x在leftCoord到rightCoord之间的点*/
for (i = low; i <= mid; i++)
{
double leftCoord = num[mid].x - dis;
if (num[i].x >= leftCoord)
{
c[p].index = L; /*标识属于左边部分*/
c[p].x = num[i].x;
c[p].y = num[i].y;
p++;
}
}
for ( ; i <= high; i++)
{
double rightCoord = num[mid].x + dis;
if (num[i].x <= rightCoord)
{
c[p].index = R; /*标识属于右边部分*/
c[p].x = num[i].x;
c[p].y = num[i].y;
p++;
}
}
sort(c, c + p, cmpy); /*找到的点再从小到大按照y排序一次*/
for (i = 0; i < p; i++)
{
if (c[i].index == L) /*左边的点一个一个地搜索,按照规律,我们只要搜索之后的7个点就可以了*/
{
for (j = 1; (j <= 7) && (i + j < p); j++)
{
if (c[i + j].index == R) /*这个点还必须属于右边*/
{
min = getDistance(c[i], c[i + j]);
if(min < dis)
{
dis = min;
}
}
}
}
}
}
return dis;
}


int main ()
{
i