(2)具体算法
[cpp]
void MergeSortDC(SeqList R,int low,int high)
{//用分治法对R[low..high]进行二路归并排序
int mid;
if(low mid=(low+high)/2; //分解
MergeSortDC(R,low,mid); //递归地对R[low..mid]排序
MergeSortDC(R,mid+1,high); //递归地对R[mid+1..high]排序
Merge(R,low,mid,high); //组合,将两个有序区归并为一个有序区
}
}//MergeSortDC
void MergeSortDC(SeqList R,int low,int high)
{//用分治法对R[low..high]进行二路归并排序
int mid;
if(low mid=(low+high)/2; //分解
MergeSortDC(R,low,mid); //递归地对R[low..mid]排序
MergeSortDC(R,mid+1,high); //递归地对R[mid+1..high]排序
Merge(R,low,mid,high); //组合,将两个有序区归并为一个有序区
}
}//MergeSortDC
(3)算法MergeSortDC的执行过程
算法MergeSortDC的执行过程如下图所示的递归树。
归并排序示例: 自顶向下的二路归并的执行过程
三 算法整体过程演示
一个归并排序的例子:对一个随机点的链表进行排序:

四 算法性能分析
1、稳定性
归并排序是一种稳定的排序。
2、存储结构要求
可用顺序存储结构。也易于在链表上实现。
3、时间复杂度
对长度为n的文件,需进行 趟二路归并,每趟归并的时间为O(n),故其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlgn)。
4、空间复杂度
需要一个辅助向量来暂存两有序子文件归并的结果,故其辅助空间复杂度为O(n),显然它不是就地排序。