主要参考kuangbin博客
个人感觉划分树是基于快速排序的分治的思想,是把快速排序每个过程记录下来而已(借助快速排序也是可以快速求整个区间第k值的)
对于每个区间,找中间值比较分成两个子区间,再递归处理
划分树Hdu4251(区间第k值)
typedef long long LL; typedef unsigned long long ULL; typedef vectorVI; const int INF = 1000000000; #define lson l, m, dep + 1 #define rson m + 1, r, dep + 1 const int maxn = 100010; const int deep = 30; int t[deep][maxn]; int st[maxn]; int toleft[deep][maxn]; void build(int l, int r, int dep) { int i; if (l == r) return; int m = (r + l) >> 1; int same = m - l + 1;//表示等于中间值而且被分入左边的个数 for (i = l; i <= r; i++) if (t[dep][i] < st[m]) same--; int lpos = l; int rpos = m + 1; for (i = l; i <= r; i++) { if (t[dep][i] < st[m])//比中间的数小,分入左边 t[dep + 1][lpos++] = t[dep][i]; else if (t[dep][i] == st[m] && same > 0) { t[dep + 1][lpos++] = t[dep][i]; same--; } else// if (t[dep][i] > st[m]) //比中间值大分入右边 t[dep + 1][rpos++] = t[dep][i]; toleft[dep][i] = toleft[dep][l - 1] + lpos - l;//从1到i放左边的个数 } build(lson); build(rson); } //查询区间第k大的数,[l,r]是大区间,[L,R]是要查询的小区间 int query(int L, int R, int k,int l, int r,int dep) { if (l == r) return t[dep][l];///!!!!!!!!!!!!!!!!!!!!!!!!!!!!1 int m = (l + r) >> 1; int cnt = toleft[dep][R] - toleft[dep][L - 1];//[L,R]中位于左边的个数 if (cnt >= k) { //l+要查询的区间前被放在左边的个数 int newl = l + toleft[dep][L - 1] - toleft[dep][l - 1]; //左端点加上查询区间会被放在左边的个数 int newr = newl + cnt - 1; return query(newl, newr, k, lson);///!!!!!newl, newr } else { int newr = R + toleft[dep][r] - toleft[dep][R]; int newl = newr - (R - L - cnt); return query(newl, newr, k - cnt, rson);///!!!!!! } } int main() { int n, m; int a, b; int p = 1; while (cin >> n) { CLR(t, 0);/// FE(i, 1, n)/// { RI(t[0][i]); st[i] = t[0][i]; } sort(st + 1, st + n + 1);/// build(1, n, 0);/// printf("Case %d:\n",p++); cin >> m; REP(i, m) { RII(a, b); printf("%d\n",query(a, b, (b - a) / 2 + 1, 1, n, 0)); } } }
划分树hdu 3473 (Minimum Sum )增加了一个lsum【】函数
typedef long long LL; typedef unsigned long long ULL; typedef vector又一解法主要是lsum的处理不同VI; const int INF = 1000000000; const int maxn = 100010; const int deep = 20; #define lson l, m, dep + 1 #define rson m + 1, r, dep + 1 int t[deep][maxn]; int toleft[deep][maxn]; int st[maxn]; LL lsum[deep][maxn]; //LL sum[maxn]; LL ans; void build(int l, int r, int dep) { if (l == r) { lsum[dep][l] = t[dep][l]; return ; } int m = (l + r) >> 1; int same = m - l + 1; FE(i, l, r) { if (t[dep][i] < st[m]) same--; lsum[dep][i] = t[dep][i]; if (i != l) lsum[dep][i] += lsum[dep][i - 1]; } int lpos = l; int rpos = m + 1; FE(i, l, r) { if (t[dep][i] < st[m]) t[dep + 1][lpos++] = t[dep][i]; else if (t[dep][i] == st[m] && same > 0) { t[dep + 1][lpos++] = t[dep][i]; same--; } else t[dep + 1][rpos++] = t[dep][i]; toleft[dep][i] = toleft[dep][l - 1] + lpos - l;/// } build(lson); build(rson); } int query(int L,int R, int k, int l, int r,int dep) { if (L == R ) return t[dep][L]; int cnt = toleft[dep][R] - toleft[dep][L - 1]; int m = (l + r) >> 1; int ln1 = toleft[dep][L - 1] - toleft[dep][l - 1]; int rn1 = L - l - ln1; int ln2 = cnt; int rn2 = R - L + 1 - cnt; if (cnt >= k) { if (rn2 > 0) { if (rn1 > 0) ans += lsum[dep + 1][m + rn1 +rn2] - lsum[dep + 1][m + rn1];///@@@@///dep + 1 else ans += lsum[dep + 1][m + rn2]; } int newl = l + ln1; int newr = newl + cnt - 1; return query(newl, newr, k, lson); } else { if (ln2 > 0) { if (ln1 > 0) ans -= lsum[dep + 1][l - 1 +ln1 + ln2] - lsum[dep + 1][l - 1 + ln1]; else ans -= lsum[dep + 1][l - 1 + ln2]; } int newr = R + toleft[dep][r] - toleft[dep][R]; int newl = newr - (R - L - cnt); return query(newl, newr, k - cnt, rson); } } int T; int n, m; int main() { int x, y; cin >> T; int p = 1; while (T--) { RI(n); // CLR(t, 0,);/// // CLR(toleft, 0);/// FE(i, 1, n) { RI(t[0][i]); st[i] = t[0][i]; } sort(st + 1, st + n + 1); build(1, n, 0);/// printf("Case #%d:\n",p++); RI(m); REP(i, m) { RII(x, y); x++; y++; ans = 0; LL midval = query(x, y, (y - x) / 2 + 1, 1, n, 0);///0 if ((y - x + 1) % 2 == 0) ans -= midval; cout << ans << endl; } printf("\n"); } }
const int MAXN = 100010; const int