
5、很明显,nMaxLeft和nMaxRight在完成我们DP的记账本同时,破坏了二叉树的结构,这将给后者的应用性带来非常大的负担,逻辑上相对复杂,Milo给出了更为简洁的,DP版本。
[cpp] view plaincopyprint- #include
- using namespace std;
- struct NODE {
- NODE *pLeft; NODE *pRight;
- };
- struct RESULT {
- int nMaxDistance; int nMaxDepth;
- };
- RESULT GetMaximumDistance(NODE* root) {
- if (!root) {
- RESULT empty = { 0, -1 }; // trick: nMaxDepth is -1 and then caller will plus 1 to balance it as zero. return empty;
- }
- RESULT lhs = GetMaximumDistance(root->pLeft); RESULT rhs = GetMaximumDistance(root->pRight);
- RESULT result;
- result.nMaxDepth = max(lhs.nMaxDepth + 1, rhs.nMaxDepth + 1); result.nMaxDistance = max(max(lhs.nMaxDistance, rhs.nMaxDistance), lhs.nMaxDepth + rhs.nMaxDepth + 2);
- return result; }
#includeusing namespace std; struct NODE { NODE *pLeft; NODE *pRight; }; struct RESULT { int nMaxDistance; int nMaxDepth; }; RESULT GetMaximumDistance(NODE* root) { if (!root) { RESULT empty = { 0, -1 }; // trick: nMaxDepth is -1 and then caller will plus 1 to balance it as zero. return empty; } RESULT lhs = GetMaximumDistance(root->pLeft); RESULT rhs = GetMaximumDistance(root->pRight); RESULT result; result.nMaxDepth = max(lhs.nMaxDepth + 1, rhs.nMaxDepth + 1); result.nMaxDistance = max(max(lhs.nMaxDistance, rhs.nMaxDistance), lhs.nMaxDepth + rhs.nMaxDepth + 2); return result; }
这里借用Milo的自荐:计算 result 的代码很清楚;nMaxDepth 就是左子树和右子树的深度加1;nMaxDistance 则取 A 和 B 情况的最大值。
为了减少 NULL 的条件测试,进入函数时,如果节点为 NULL,会传回一个 empty 变量。比较奇怪的是 empty.nMaxDepth = -1,目的是让调用方 +1 后,把当前的不存在的 (NULL) 子树当成最大深度为 0。
除了提高了可读性,这个解法的另一个优点是减少了 O(节点数目) 大小的侵入式资料,而改为使用 O(树的最大深度) 大小的栈空间。这个设计使函数完全没有副作用(side effect)。
测试代码: [cpp] view plaincopyprint
- void Link(NODE* nodes, int parent, int left, int right) {
- if (left != -1) nodes[parent].pLeft = &nodes[left];
- if (right != -1)
- nodes[parent].pRight = &nodes[right]; }
- void main()
- { // P. 241 Graph 3-12
- NODE test1[9] = { 0 }; Link(test1, 0, 1, 2);
- Link(test1, 1, 3, 4); Link(test1, 2, 5, 6);
- Link(test1, 3, 7, -1); Link(test1, 5, -1, 8);
- cout << "test1: " << GetMaximumDistance(&test1[0]).nMaxDistance << endl;
- // P. 242 Graph 3-13 left NODE test2[4] = { 0 };
- Link(test2, 0, 1, 2); Link(test2, 1, 3, -1);
- cout << "test2: " << GetMaximumDistance(&test2[0]).nMaxDistance << endl;
- // P. 242 Graph 3-13 right NODE test3[9] = { 0 };
- Link(test3, 0, -1, 1); Link(test3, 1, 2, 3);
- Link(test3, 2, 4, -1); Link(test3, 3, 5, 6);
- Link(test3, 4, 7, -1); Link(test3, 5, -1, 8);
- cout << "test3: " << GetMaximumDistance(&test3[0]).nMaxDistance << endl;
- // P. 242 Graph 3-14 // Same as Graph 3-2, not test
- // P. 243 Graph 3-15
- NODE test4[9] = { 0 }; Link(test4, 0, 1, 2);
- Link(test4, 1, 3, 4); Link(test4, 3, 5, 6);
- Link(test4, 5, 7, -1); Link(test4, 6, -1, 8);
- cout << "test4: " << GetMaximumDistance(&test4[0]).nMaxDistance << endl; }
void Link(NODE* nodes, int parent, int left, int right) { if (left != -1) nodes[parent].pLeft = &nodes[left]; if (right != -1) nodes[parent].pRight = &nodes[right]; } void main() { // P. 241 Graph 3-12 NODE test1[9] = { 0 }; Link(test1, 0, 1, 2); Link(test1, 1, 3, 4); Link(test1, 2, 5, 6); Link(test1, 3, 7, -1); Link(test1, 5, -1, 8); cout << "test1: " << GetMaximumDistance(&test1[0]).nMaxDistance << endl; // P. 242 Graph 3-13 left NODE test2[4] = { 0 }; Link(test2, 0, 1, 2); Link(test2, 1, 3, -1); cout << "test2: " << GetMaximumDistance(&test2[0]).nMaxDistance << endl; // P. 242 Graph 3-13 right NODE test3[9] = { 0 }; Link(test3, 0, -1, 1); Link(test3, 1, 2, 3); Link(test3, 2, 4, -1); Link(test3, 3, 5, 6); Link(test3, 4, 7, -1); Link(test3, 5, -1, 8); cout << "test3: " << GetMaximumDistance(&test3[0]).nMaxDistance << endl; // P. 242 Graph 3-14 // Same as Graph 3-2, not test // P. 243 Graph 3-15 NODE test4[9] = { 0 }; Link(test4, 0, 1, 2); Link(test4, 1, 3, 4); Link(test4, 3, 5, 6); Link(test4, 5, 7, -1); Link(test4, 6, -1, 8); cout << "test4: " << GetMaximumDistance(&test4[0]).nMaxDistance << endl; }
