leetCode解题报告之5道简单题III(一)

2014-11-24 11:37:53 · 作者: · 浏览: 2

题目一:

Binary Tree Zigzag Level Order Traversal

Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to right, then right to left for the next level and alternate between).

For example:
Given binary tree {3,9,20,#,#,15,7},

    3
   / \
  9  20
    /  \
   15   7

return its zigzag level order traversal as:

[
  [3],
  [20,9],
  [15,7]
]

confused what "{1,#,2,3}" means > read more on how binary tree is serialized on OJ.


分析:层次遍历的变形哈.没啥太大的变化,看代码理解下哈!


/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public ArrayList
  
   > zigzagLevelOrder(TreeNode root) {
        ArrayList
   
    > result = new ArrayList
    
     >(); if (root == null) return result; Queue
     
       queue = new LinkedList
      
       (); queue.add(root); int k = 1; ArrayList
       
         list = new ArrayList
        
         (); while (!queue.isEmpty()){ list.clear(); while (!queue.isEmpty()){ list.add(queue.remove()); } ArrayList
         
           arrays = new ArrayList
          
           (); for(int i=0; i
            
            


题目二:

Convert Sorted Array to Binary Search Tree

Given an array where elements are sorted in ascending order, convert it to a height balanced BST.

题意:给你一个array数组,让你求出这个数组所能组成的一个平衡的二叉树,很明显的递归问题哈,用分治的思想把中间的结点作为根结点,再一直递归下去就可以了哈!!

AC代码:

/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public TreeNode sortedArrayToBST(int[] num) {
        if (num.length == 0){
            return null;
        }
        return buildBST(num, 0, num.length-1);
    }
    /*
        递归调用
    */
    public TreeNode buildBST(int[] num, int left, int right){
        /*当left > right 的时候,表示是叶子结点的孩子了,返回null*/
        if (left > right){
            return null;
        }
        /*取中间值,作为根结点的值*/
        int middle = (right + left) / 2;
        TreeNode root = new TreeNode(num[middle]);
        /*求出左右孩子*/
        root.left = buildBST(num, left, middle-1);
        root.right = buildBST(num, middle+1, right);
        return root;
    }
}

类似的题目:

Convert Sorted List to Binary Search Tree

Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.

题意:跟上面的一样,只不过数组换成了链表!!果断要知道如何快速求出链表中间的那个结点哈~

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; next = null; }
 * }
 */
/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    
    public TreeNode sortedListToBST(ListNode head) {
        if (head == null){
            return null;
        }
        return buildBST(head, null);
    }
    
    public TreeNode buildBST(ListNode left, ListNode right){
        if (right == null && left == null){
            return null;
        }
        if (right != null && right.next == left){
            return null;
        }
        /*求链表中间结点的前一个结点 Begin*/
        ListNode preLeft = new ListNode(0);
        preLeft.next = left;
        ListNode tempNode = left;
        ListNode preMiddleNode = preLeft;
        /*求链表中间结点的具体方法*/
        while (tempNode != right && tempNode.next != right){
            preMiddleNode = preMiddleNode.next;
            tempNode = tempNode.next.next;
        }
        /*求链表中间结点的前一个结点 End*/
        
        /*递归咯!*/
        ListNode middleNode = preMiddleNode.next;
        TreeNode root = new TreeNode(middleNode.val);
        root.left = buildBST(left, preMiddleNode);
        root.right = buildBST(preMiddleNode.next.next, right);
        return root;
    }
}

题目三:

Surrounded Regions(考察深度搜索)

Given a 2D board containing 'X' and 'O', capture all regions surrounded by 'X'.

A region is captured by flipping all 'O's into 'X's in tha