l 并发
l 异步
l 缓存
下面将我平常工作中遇到一些问题例举一二,其设计思想无非以上三点。
1任务队列
1.1 以生产者-消费者模型设计任务队列
生产者-消费者模型是人们非常熟悉的模型,比如在某个服务器程序中,当User数据被逻辑模块修改后,就产生一个更新数据库的任务(produce),投递给IO模块任务队列,IO模块从任务队列中取出任务执行sql操作(consume)。
设计通用的任务队列,示例代码如下:
详细实现可参见:
http://ffown.googlecode.com/svn/trunk/fflib/include/detail/task_queue_impl.h
void task_queue_t::produce(const task_t& task_) {
lock_guard_t lock(m_mutex);
if (m_tasklist->empty()){//! 条件满足唤醒等待线程
m_cond.signal();
}
m_tasklist->push_back(task_);
}
int task_queue_t::comsume(task_t& task_){
lock_guard_t lock(m_mutex);
while (m_tasklist->empty())//! 当没有作业时,就等待直到条件满足被唤醒{
if (false == m_flag){
return -1;
}
m_cond.wait();
}
task_ = m_tasklist->front();
m_tasklist->pop_front();
return 0;
}
1.2 任务队列使用技巧
1.2.1 IO 与 逻辑分离
比如网络游戏服务器程序中,网络模块收到消息包,投递给逻辑层后立即返回,继续接受下一个消息包。逻辑线程在一个没有io操作的环境下运行,以保障实时性。示例:
void handle_xx_msg(long uid, const xx_msg_t& msg){
logic_task_queue->post(boost::bind(&servie_t::proces, uid, msg));
}
注意,此模式下为单任务队列,每个任务队列单线程。
1.2.2 并行流水线
上面的只是完成了io 和 cpu运算的并行,而cpu中逻辑操作是串行的。在某些场合,cpu逻辑运算部分也可实现并行,如游戏中用户A种菜和B种菜两种操作是完全可以并行的,因为两个操作没有共享数据。最简单的方式是A、B相关的操作被分配到不同的任务队列中。示例如下:
void handle_xx_msg(long uid, const xx_msg_t& msg) {
logic_task_queue_array[uid % sizeof(logic_task_queue_array)]->post(
boost::bind(&servie_t::proces, uid, msg));
}
1.2.3 连接池与异步回调
比如逻辑Service模块需要数据库模块异步载入用户数据,并做后续处理计算。而数据库模块拥有一个固定连接数的连接池,当执行SQL的任务到来时,选择一个空闲的连接,执行SQL,并把SQL 通过回调函数传递给逻辑层。其步骤如下:
n 预先分配好线程池,每个线程创建一个连接到数据库的连接
n 为数据库模块创建一个任务队列,所有线程都是这个任务队列的消费者
n 逻辑层想数据库模块投递sql执行任务,同时传递一个回调函数来接受sql执行结果
示例如下:
1 void db_t:load(long uid_, boost::functionpost(boost::bind(&db_t:load, uid, func));
注意,此模式下为单任务队列,每个任务队列多线程。
2. 日志
本文主要讲C++多线程 编程,日志系统不是为了提高程序效率,但是在程序调试、运行期排错上,日志是无可替代的工具,相信开发后台程序的朋友都会使用日志。常见的日志使用方式有如下几种:
n 流式,如logstream << “start servie time[%d]” << time(0) << ” app name[%s]” << app_string.c_str() << endl;
n Printf 格式如:logtrace(LOG_MODULE, “start servie time[%d] app name[%s]“, time(0), app_string.c_str());
二者各有优缺点,流式是线程安全的,printf格式格式化字符串会更直接,但缺点是线程不安全,如果把app_string.c_str() 换成app_string (std::string),编译被通过,但是运行期会crash(如果运气好每次都crash,运气不好偶尔会crash)。我个人钟爱printf风格,可以做如下改进:
l 增加线程安全,利用C++模板的traits机制,可以实现线程安全。示例:
template
void logtrace(const char* module, const char* fmt, ARG1 arg1){
boost::format s(fmt);
f % arg1;
}
这样,除了标准类型+std::string 传入其他类型将编译不能通过。这里只列举了一个参数的例子,可以重载该版本支持更多参数,如果你愿意,可以支持9个参数或更多。
l 为日志增加颜色,在printf中加入控制字符,可以再屏幕终端上显示颜色,Linux下示例:printf(“\033[32;49;1m [DONE] \033[39;49;0m")
l 每个线程启动时,都应该用日志打印该线程负责什么功能。这样,程序跑起来的时候通过top –H – p pid 可以得知那个功能使用cpu的多少。实际上,我的每行日志都会打印线程id,此线程id非pthread_id,而其实是线程对应的系统分配的进程id号。
3. 性能监控
尽管已经有很多工具可以分析c++程序运行性能,但是其大部分还是运行在程序debug阶段。我们需要一种手段在debug和release阶段都能监控程序,一方面得知程序瓶颈之所在,一方面尽早发现哪些 组件在运行期出现了异常。
通常都是使用gettimeofday 来计算某个函数开销,可以精确到微妙。可以利用C++的确定性析构,非常方便的实现获取函数开销的小工具,示例如下:
struct profiler{
profiler(const char* func_name){
gettimeofday(&tv, NULL);
}
~profiler(){
struct timeva l tv2;
gettimeofday(&tv2, NULL);
long cost = (tv.tv_sec - tv.tv_sec) * 1000000 + (tv.tv_usec - tv.tv_usec);
//! post to some manager
}
struct timeva l tv;
};
#define PROFILER() profiler(__FUNCTION__)
Cost 应该被投递到性能统计管理器中,该管理器定时讲性能统计数据输出到文件中。
4 Lambda 编程
使用forea