由于题目中N不超过8000,即k<=4000,所以对于以上的推导的公式,总的移动次数都不超过int的表示范围。当然,实际上当N很大时,不可能每个字母只出现2次,总的移动次数可以估算为更小的值。
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNext()) {
int n = Integer.parseInt(scanner.nextLine());
String str = scanner.nextLine();
char[] chs = str.toCharArray();
int[] count = new int[26];
char ch = '0';
int oddchar = 0;
for (int j = 0; j < chs.length; j++) {
int index = chs[j] - 'a';
count[index]++;
}
for (int i = 0; i < 26; i++) {
if (count[i] % 2 != 0) {
oddchar++;
ch = (char) (i + 'a');
}
}
if (oddchar > 1) {
System.out.println("Impossible");
} else {
int result = exchange(chs, n, ch);
System.out.println(result);
}
}
}
private static int exchange(char[] chs, int n, char ch) {
int count = 0, i, j, k;
for (i = 0; i < n / 2; i++) {
if (chs[i] == ch) {
for (j = i; j < n - i - 1; j++) {
if (chs[j] == chs[n - i - 1]) {
break;
}
}
count += j - i;
for (k = j; k > i; k--) {
chs[k] = chs[k - 1];
}
chs[i] = chs[n - i - 1];
} else {
for (j = n - i - 1; j >= i; j--) {
if (chs[j] == chs[i]) {
break;
}
}
count += n - i - 1 - j;
for (k = j; k < n - i - 1; k++) {
chs[k] = chs[k + 1];
}
chs[n - i - 1] = chs[i];
}
}
return count;
}
}