//height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀
void calheight(int *r,int *sa,int n) {
int i,j,k=0;
for(i=1; i<=n; i++)
rank1[sa[i]]=i;
for(i=0; i<n; height[rank1[i++]]=k)
for(k k--:0,j=sa[rank1[i]-1]; r[i+k]==r[j+k]; k++);
}
inline void RD(int &ret) {
char c;
do {
c = getchar();
} while(c < '0' || c > '9') ;
ret = c - '0';
while((c=getchar()) >= '0' && c <= '9')
ret = ret * 10 + ( c - '0' );
}
inline void OT(int a){
if(a >= 10)OT(a / 10) ;
putchar(a % 10 + '0') ;
}
char a[N] ;
int main() {
int T ;
cin 》 T ;
while( T -- ){
cin 》 a ;
int l = strlen(a) ;
for (int i = 0 ; i < l ; i ++ )r[i] = a[i] ;
r[l] = 0 ;
dc3(r , sa , l + 1 , 200) ;
calheight(r , sa , l ) ;
int ans = 0 ;
for (int i = 1 ; i <= l ; i ++ ){
ans += l - sa[i] - height[i] ;
}
cout 《 ans 《 endl;
}
return 0 ;
}
例 6 :最长回文子串( ural1297 )
给定一个字符串,求最长回文子串。
[解法]:
将整个字 符串反过来写在原字符串后面,中间用一个特殊的字符隔开。这样就把问题变为 了
求这个新的字符串的某两个后缀的最长公共前缀。
eg:aabebf ----> aabebf&fbebaa
例 7 :连续重复子串 (pku2406)
给定一个字符串 L ,已知这个字符串是由某个字符串 S 重复 R 次而得到的,
求 R 的最大值。
[解法]:
做法比较简单,穷举字符串 S 的长度 k ,然后判断是否满足。判断的时候,
先看字符串 L 的长度能否被 k 整除,再看 suffix(1) 和 suffix(k+1) 的最长公共
前缀是否等于 n-k .
hit:此题更好的是考察KMP的next
int k=len-next[len];
if(len%k==0) fprintf(fout,"%d\n",len/k);
else fprintf(fout,"1\n");
例 8 :重复次数最多的连续重复子串 (spoj687,pku3693)
给定一个字符串,求重复次数最多的连续重复子串。
[解法]:
先穷举长度 L ,然后求长度为 L 的子串最多能连续出现几次。首先连续出 现
1 次是肯定可以的,所以这里只考虑至少 2 次的情况。假设在原字符串中连续 出
现 2 次,记这个子字符串为 S ,那么 S 肯定包括了字符 r[0], r[L], r[L*2],
r[L*3], …… 中的某相邻的两个。所以只须看字符 r[L*i] 和 r[L*(i+1)] 往前和
往后各能匹配到多远,记这个总长度为 K ,那么这里连续出现了 K/L+1 次。最 后
看最大值是多少。
例 9 :最长公共子串 (pku2774,ural1517)
给定两个字符串 A 和 B ,求最长公共子串。
连接字符串,O(N)扫描
//POJ 2774 HDU 1403
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
#include <stack>
#include <map>
#include <iomanip>
#define PI acos(-1.0)
#define Max 2505
#define inf 1《28
#define LL(x) ( x 《 1 )
#define RR(x) ( x 《 1 | 1 )
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )
#define mem(a,b) memset(a,b,sizeof(a))
#define mp(a,b) make_pair(a,b)
#define PII pair<int,int>
using namespace std;
#define N 200005
/****后缀数组模版****/
#define F(x)((x)/3+((x)%3==1 0:tb)) //F(x)求出原字符串的suffix(x)在新的字符串中的起始位置
#define G(x)((x)<tb (x)*3+1:((x)-tb)*3+2) //G(x)是计算新字符串的suffix(x)在原字符串中的位置,和F(x)为互逆运算
int wa[N],wb[N],wv[N],WS[N];
int sa[N*3] ;
int rank1[N],height[N];
int r[N*3];
int c0(int *r,int a,int b) {
return r[a]==r[b] && r[a+1]==r[b+1] && r[a+2]==r[b+2];
}
int c12(int k,int *r,int a,int b) {
if(k==2)
return r[a]<r[b] || ( r[a]==r[b] && c12(1,r,a+1,b+1) );
else
return r[a]<r[b] || ( r[a]==r[b] && wv[a+1]<wv[b+1] );
}
void sort(int *r,int *a,int *b,int n,int m) {
int i;
for(i=0; i<n; i++)
wv[i]=r[a[i]];
for(i=0; i<m; i++)
WS[i]=0;
for(i=0; i<n; i++)
WS[wv[i]]++;
for(i=1; i<m; i++)
WS[i]+=WS[i-1];
for(i=n-1; i>=0; i--)
b[--WS[wv[i]]]=a[i];
return;
}
//注意点:为了方便下面的递归处理,r数组和sa数组的大小都要是3*n
void dc3(int *r,int *sa,int n,int m) { //rn数组保存的是递归处理的新字符串,san数组是新字符串的sa
int i , j , *rn = r+n , *san = sa+n , ta = 0 ,tb = (n+1)/3 , tbc = 0 , p;
r[n] = r[n+1] = 0;
for(i=0; i<n; i++) {
if(i%3!=0)
wa[tbc++]=i; //tbc表示起始位置模3为1或2的后缀个数
}
sort(r+2,wa,wb,tbc,m);
sort(r+1,wb,wa,tbc,m);
sort(r,wa,wb,tbc,m);
for(p=1,rn[F(wb[0])]=0,i=1; i<tbc; i++)
rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++;
if(p<tbc)
dc3(rn,san,tbc,p);
else {
for(i=0; i<tbc; i++)
san[rn[i]]=i;
}
//对所有起始位置模3等于0的后缀排序
for(i=0; i<tbc; i++) {
if(san[i]<tb)
wb[ta++]=san[i]*3;
}
if(n%3==1) //n%3==1,要特殊处理suffix(n-1)
wb[ta++]=n-1;
sort(r,wb,wa,ta,m);
for(i=0; i<tbc; i++)
wv[wb[i]=G(san[i])]=i;
//合并所有后缀的排序结果,保存在sa数组中
for(i=0,j=0,p=0; i<ta&&j<tbc; p++)
sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++];
for(; i<ta; p++)
sa[p]=wa[i++];
for(; j<tbc; p++)
sa[p]=wb[j++];
return;
}
//height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀
void calheight(int *r,int *sa,int n) {
int i,j,k=0;
for(i=1; i<=n; i++)
rank1[sa[i]]=i;
for(i=0; i<n; height[rank1[i++]]=k)
for(k k--:0,j=sa[rank1[i]-1]; r[i+k]==r[j+k]; k++);
}
char a[N] ;
int ans = 0 ;
int main() {
while(scanf("%s",a) != EOF) {
ans = 0 ;
int l = strlen(a) ;
a[l] = '*' ;
scanf("%s", a + l + 1) ;
int ll = strlen(a) ;
for (int i = 0 ; i < ll ; i ++ )r[i] = (int)a[i] ;
r[ll] = 0 ;
dc3(r ,sa ,ll + 1,128) ;
calheight(r , sa , ll) ;
for (int i = 1 ; i <= ll ; i ++ ) {
if((sa[i] > l && sa[i - 1] < l ) || (sa[i] < l && sa[i - 1] > l) ) {
ans = max(ans ,height[i]) ;
}
}
cout 《 ans 《 endl;
}
return 0 ;
}