题目描述:
给定一个由不同的小写字母组成的字符串,输出这个字符串的所有全排列。
我们假设对于小写字母有'a' < 'b' < … < 'y' < 'z',而且给定的字符串中的字母已经按照从小到大的顺序排列。
输入:
输入只有一行,是一个由不同的小写字母组成的字符串,已知字符串的长度在1到6之间。
输出:
输出这个字符串的所有排列方式,每行一个排列。要求字母序比较小的排列在前面。字母序如下定义:
已知S = s1s2…sk , T = t1t2…tk,则S < T 等价于,存在p (1 <= p <= k),使得
s1 = t1, s2 = t2, …, sp - 1 = tp - 1, sp < tp成立。
样例输入:
abc
样例输出:
abc
acb
bac
bca
cab
cba
提示:
每组样例输出结束后要再输出一个回车。
想必大家对perm递归算法求全排列并不陌生,但我贴出来的题目却不能用perm算法来解决,为什么呢?请容我慢慢道来,首先题目对全排列有着非常严格的顺序要求,即按字典顺序排列,就是这个perm算法是满足不了的(或许经过小小的改变是可以实现的,我们在这里就不讨论了)。那么下来我来谈谈perm算法的核心思:举个例子,比如要你1的全排列,你肯定会说那还不简单啊,那么接下来加深难度求1,2的全排列,其实也不难,现在让你求1,2,3,4,5的全排列呢,还转得过来吗?现在我们可以这样想,3,4,5的全排列是以3开头的4,5的全排列组合和4开头的3,5的全排列组合以及以5开头的3,4全排列组合。这就是perm算法的核心思想,列出一个通俗一点的式子:
从而可以推断,设一组数p = {r1, r2, r3, … ,rn}, 全排列为perm(p),pn = p - {rn}.
因此perm(p) = r1perm(p1), r2perm(p2), r3perm(p3), … , rnperm(pn)。
当n = 1时perm(p} = r1.
下面贴出代码:
#include<CSTDIO>
#include<CSTRING>
#define MAX 10
using namespace std;
void swap(char str[],int i,int j)
{
int temp;
temp=str[i];
str[i]=str[j];
str[j]=temp;
}
void perm(char str[],int k,int m)
{
int i;
if(k>m)
{
for(i=0;i<=m;i++)
printf("%c",str[i]);
printf("\n");
}
else
{
for(i=k;i<=m;i++)
{
swap(str,k,i);
perm(str,k+1,m);
swap(str,k,i);
}
}
}
int main(int argc,char *argv[])
{
char str[MAX];
while(scanf("%s",str)!=EOF)
{
int len=strlen(str);
perm(str,0,len-1);
printf("\n");
}
return 0;
}
这里会出现两个问题,其一是超时,其二是答案顺序不对…