设为首页 加入收藏

TOP

HDU 3639 Hawk-and-Chicken(一)
2015-07-20 17:39:59 来源: 作者: 【 】 浏览:6
Tags:HDU 3639 Hawk-and-Chicken

Hawk-and-Chicken

Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1979 Accepted Submission(s): 570


Problem Description Kids in kindergarten enjoy playing a game called Hawk-and-Chicken. But there always exists a big problem: every kid in this game want to play the role of Hawk.
So the teacher came up with an idea: Vote. Every child have some nice handkerchiefs, and if he/she think someone is suitable for the role of Hawk, he/she gives a handkerchief to this kid, which means this kid who is given the handkerchief win the support. Note the support can be transmitted. Kids who get the most supports win in the vote and able to play the role of Hawk.(A note:if A can win
support from B(A != B) A can win only one support from B in any case the number of the supports transmitted from B to A are many. And A can't win the support from himself in any case.
If two or more kids own the same number of support from others, we treat all of them as winner.
Here's a sample: 3 kids A, B and C, A gives a handkerchief to B, B gives a handkerchief to C, so C wins 2 supports and he is choosen to be the Hawk.
Input There are several test cases. First is a integer T(T <= 50), means the number of test cases.
Each test case start with two integer n, m in a line (2 <= n <= 5000, 0 Output For each test case, the output should first contain one line with "Case x:", here x means the case number start from 1. Followed by one number which is the totalsupports the winner(s) get.
Then follow a line contain all the Hawks' number. The numbers must be listed in increasing order and separated by single spaces.
Sample Input
2
4 3
3 2
2 0
2 1

3 3
1 0
2 1
0 2

Sample Output
Case 1: 2
0 1
Case 2: 2
0 1 2

Author Dragon
Source 2010 ACM-ICPC Multi-University Training Contest(19)――Host by HDU 解题思路:首先是强连通分量缩点,然后重新构图,对于同一个强连通分量的点的支持度一是强连通分量内的其他点,还有其他的强连通分量对他所在强连通分量的支持,为了找到这个我们之前构图时反向建图,然后bfs
#include
   
    
#include
    
      #include
     
       #include
      
        #include
       
         using namespace std; #define Max 5005 int head[Max],head2[Max],j,k,bcnt,dindex,dfn[Max],low[Max],belong[Max],sup[Max]; bool visit[Max],vis[Max];; stack
        
          s; struct { int s; int e; int next; }edge[Max*6],edge2[Max*6]; void add(int s,int e) { edge[k].s=s; edge[k].e=e; edge[k].next=head[s]; head[s]=k++; } void add2(int s,int e) { edge2[j].s=s; edge2[j].e=e; edge2[j].next=head2[s]; head2[s]=j++; } void tarjan(int i) { int ed; dfn[i]=low[i]=++dindex; visit[i]=true; s.push(i); for(int t=head[i];t!=-1;t=edge[t].next) { ed=edge[t].e; if(!dfn[ed]) { tarjan(ed); if(low[i]>low[ed]) low[i]=low[ed]; } else if(visit[ed]&&low[i]>dfn[ed]) low[i]=dfn[ed]; } if(dfn[i]==low[i]) { bcnt++; do { ed=s.top(); s.pop(); visit[ed]=false; belong[ed]=bcnt; }while(i!=ed); } } void solve(int n) { int i; bcnt=dindex=0; memset(visit,false,sizeof(visit)); memset(low,0,sizeof(low)); memset(belong,0,sizeof(belong)); memset(dfn,0,sizeof(dfn)); while(!s.empty()) s.pop(); for(i=0;i
         
           q; q.push(rt); while(!q.empty()) { st=q.front(); q.pop(); for(i=head2[st];i!=-1;i=edge2[i].next) { ed=edge2[i].e; if(!vis[ed]) { sum+=sup[ed]+1; q.push(ed); vis[ed]=true; } } } return sum; } int main() { int i,t,m,n,a,b,ans[Max],sum[Max],flag,cnt,p[Max],ncase=1; scanf("%d",&t); while(t--) { flag=-1; j=k=cnt=0; memset(p,0,sizeof(p)); memset(ans,0,sizeof(ans)); memset(sum,0,sizeof(sum)); memset(head,-1,sizeof(head)); memset(head2,-1,sizeof(head2)); memset(sup,0,sizeof(sup)); scanf("%d%d",&n,&m); while(m--) { scanf("%d%d",&a,&b); add(a,b); } solve(n); f
首页 上一页 1 2 下一页 尾页 1/2/2
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇HDOJ 5001 Walk 下一篇南阳ACM24-素数距离问题

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

·数据库:推荐几款 Re (2025-12-25 12:17:11)
·如何最简单、通俗地 (2025-12-25 12:17:09)
·什么是Redis?为什么 (2025-12-25 12:17:06)
·对于一个想入坑Linux (2025-12-25 11:49:07)
·Linux 怎么读? (2025-12-25 11:49:04)