设为首页 加入收藏

TOP

整数点与Pick定理
2014-11-23 23:40:03 来源: 作者: 【 】 浏览:8
Tags:数点 Pick 定理

Pick 定理 设以整数点为顶点的多边形的面积为S,多边形内部的整数点数为N,多边形边界上的整数点数为L,则

N+1/2L-1=S.

对于N与L的计算由下面的程序给出:

typedef struct Point

{

int x,y;

}POINT;

int gcd(int a,int b) //求数a,b的最大公因数

{

if(b==0) return a;

else return gcd(b,a%b);

}

多边形边上的网格点个数有下列程序段给出:

int OnEdge(int n,POINT *p)

{

int i,ret=0;

for(i=0;i

ret+=gcd(fabs(p[i].x-p[(i+1)%n].x),fabs(p[i].y-p[(i+1)%n].y));

return ret;

}

多边形内部的网格点个数由下列程序段给出:

int InSide(int n,POINT *p)

{

int i,area=0;

for(i=0;i

return (fabs(area)-OnEdge(n,p))/2 +1;

}

问题描述

格点是一个有序(x,y),其中x和y都是整数。给定三角形的顶点坐标(碰巧是格点),要你计算完全在三角形中的顶点个数(三角形边上和三角形的顶点不必计算)。

输入

输入有多组测试数据。每组测试数据由6个整数x1,y1,x2,y2,x3和y3组成,其中,(x1,y1)、(x2,y2)和(x3,y3)是三角形的顶点坐标。输入中的所有三角形都是非退化的(有正的面积),-15000≤x1,y1,x2,y2,x3,y3≤15000。当输入的数满足x1=y1=x2=y2=x3=y3=0时表示输入结束,不必处理。

输出

对每组测试数据,单行上输出三角形内部格点的个数。

输入样例 输出样例

0 0 1 0 0 1 0

0 0 5 0 0 5 6

0 0 0 0 0 0

分析

本题可直接用Pick定理:area=OnEdge/2+InSide-1,其中area为顶点都是格点的多边形的面积,OnEdge为多边形上的格点数,InSide为多边形内部的格点数。

多边形的面积可用叉积计算,但注意可能为负值,需转换。给定两个格点A(x0,y0),B(x1,y1)。设C(X,Y)是线段AB上的一个结点。那么,x=x0+λ(x1-x0),y=y0+λ(y1-y0),(0≤λ≤1)。要使x与y均为整数,λ必为一个分数,而且λ的分母是x1-x0与y1-y0的公因数,因此可用最大公因数算法gcd求得。

参考程序

#include

#include

#include

using namespace std;

typedef struct Point

{

int x,y;

}POINT;

int gcd(int a,int b)

{

if(b==0) return a;

else return gcd(b,a%b);

}

int Int_area(POINT a,POINT b,POINT c) //平行四边形面积

{

return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);

}

int edgenum(POINT a,POINT b)

{

int dx,dy;

dx=a.x-b.x;

if(dx<0) dx=-dx;

dy=a.y-b.y;

if(dy<0) dy=-dy;

return gcd(dx,dy);

}

int main()

{

POINT a,b,c;

int area,OnEdge,InSide;

while(cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y&&(a.x||a.y||b.x||b.y||c.x||c.y))

{

area=Int_area(a,b,c);

if(area<0) area=-area;

OnEdge=edgenum(a,b)+edgenum(b,c)+edgenum(c,a);

InSide=(area-OnEdge+2)/2; //Pick定理应用,area是三角形面积的2倍

cout<

}

return 0;

}

作者 在云中漫步

】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇用两个栈实现队列的源代码 下一篇一步一步写算法(之图的保存)

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: