?
题意:
思路:与上题不同,这道题不要求m是素数,是利用扩展Baby Step Giant Step算法求离散对数。
以下转载自:AekdyCoin
【扩展Baby Step Giant Step】
【问题模型】
求解
A^x = B (mod C) 中 0 <= x < C 的解,C 无限制(当然大小有限制……)
【写在前面】
这个问题比较麻烦,目前网络上流传许多版本的做法,不过大部分已近被证明是完全错误的!
这里就不再累述这些做法,下面是我的做法(有问题欢迎提出)
下面先给出算法框架,稍后给出详细证明:
(0) for i = 0 -> 50 if(A^i mod C == B) return i O(50)
(1) d<- 0 D<- 1 mod C
while((tmp=gcd(A,C))!=1)
{
if(B%tmp)return -1; // 无解!
++d;
C/=tmp;
B/=tmp;
D=D*A/tmp%C;
}
(2) m = Ceil ( sqrt(C) ) //Ceil是必要的 O(1)
(3) for i = 0 -> m 插入Hash表(i, A^i mod C) O( m)
(4) K=pow_mod(A,m,C)
for i = 0 -> m
解 D * X = B (mod C) 的唯一解 (如果存在解,必然唯一!)
之后Hash表中查询,若查到(假设是 j),则 return i * m + j + d
否则
D=D*K%C,继续循环
(5) 无条件返回 -1 ;//无解!
下面是证明:
推论1:
A^x = B(mod C)
等价为
A^a * A^b = B ( mod C) (a+b) == x a,b >= 0
证明:
A^x = K * C + B (模的定义)
A^a * A^b = K*C + B( a,b >=0, a + b == x)
所以有
A^a * A^b = B(mod C)
推论 2:
令 AA * A^b = B(mod C)
那么解存在的必要条件为: 可以得到至少一个可行解 A^b = X (mod C)
使上式成立
推论3
AA * A^b = B(mod C)
中解的个数为 (AA,C)
由推论3 不难想到对原始Baby Step Giant Step的改进
For I = 0 -> m
For any solution that AA * X = B (mod C)
If find X
Return I * m + j
而根据推论3,以上算法的复杂度实际在 (AA,C)很大的时候会退化到几乎O(C)
?
归结原因,是因为(AA,C)过大,而就是(A,C)过大
于是我们需要找到一中做法,可以将(A,C)减少,并不影响解
下面介绍一种“消因子”的做法
一开始D = 1 mod C
进行若干论的消因子,对于每次消因子
令 G = (A,C[i]) // C[i]表示经过i轮消因子以后的C的值
如果不存在 G | B[i] //B[i]表示经过i轮消因子以后的B的值
直接返回无解
否则
B[i+1] = B[i] / G
C[i+1] = C[i] / G
D = D * A / G
具体实现只需要用若干变量,细节参考代码
假设我们消了a'轮(假设最后得到的B,C分别为B',C')
那么有
D * A^b = B' (mod C')
于是可以得到算法
for i = 0 -> m
解 ( D* (A^m) ^i ) * X = B'(mod C')
由于 ( D* (A^m) ^i , C') = 1 (想想为什么?)
于是我们可以得到唯一解
之后的做法就是对于这个唯一解在Hash中查找
这样我们可以得到b的值,那么最小解就是a' + b !!
现在问题大约已近解决了,可是细心看来,其实还是有BUG的,那就是
对于
A^x = B(mod C)
如果x的最小解< a',那么会出错
而考虑到每次消因子最小消 2
故a'最大值为log(C)
于是我们可以暴力枚举0->log(C)的解,若得到了一个解,直接返回
否则必然有 解x > log(C)
PS.以上算法基于Hash 表,如果使用map等平衡树维护,那么复杂度会更大
(转载结束)
代码:
?
#include
#include
#include
#include
#include
?