设为首页 加入收藏

TOP

HDU 2602 Bone Collector 0/1背包
2015-07-20 18:02:46 来源: 作者: 【 】 浏览:8
Tags:HDU 2602 Bone Collector 0/1 背包

题目链接:HDU 2602 Bone Collector

Bone Collector

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 28903 Accepted Submission(s): 11789


Problem Description Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?
\


Input The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Output One integer per line representing the maximum of the total value (this number will be less than 2 31).
Sample Input
1
5 10
1 2 3 4 5
5 4 3 2 1

Sample Output
14

Author Teddy
Source HDU 1st “Vegetable-Birds Cup” Programming Open Contest
Recommend lcy | We have carefully selected several similar problems for you: 1203 2159 2955 2844 1087
经典0/1背包问题。

有N件物品和一个容量为V的背包,第i件物品的体积为v[i],价值为w[i],求解将哪些物品装入背包才能使总价值最大。

这是最基础的背包问题,每种物品只有一件,且只有两种状态:放与不放。

用子问题定义状态:dp[i][v]表示前i件物品恰好放入一个容量为m的包中可获得的最大价值。

状态转移方程:dp[i][m] = max(dp[i-1][m], dp[i-1][m-v[i]]+w[i]);

可转化为一维情况:dp[m] = max(dp[m], dp[m-v[i]]+w[i]);

代码:

#include 
  
   
#include 
   
     #include 
    
      using namespace std; int n, v, dp[1010], value[1010], volume[1010]; int main() { int t; scanf("%d", &t); while(t--) { scanf("%d%d", &n, &v); for(int i = 1; i <= n; i++) scanf("%d", &value[i]); for(int i = 1; i <= n; i++) scanf("%d", &volume[i]); memset(dp, 0, sizeof(dp)); for(int i = 1; i <= n; i++) for(int j = v; j >= volume[i]; j--) dp[j] = max(dp[j], dp[j-volume[i]]+value[i]); printf("%d\n", dp[v]); } return 0; } 
    
   
  






】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇HDU 1024:Max Sum Plus Plus 下一篇UVA 11765 Component Placement ..

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: