设为首页 加入收藏

TOP

hdu 1588 Gauss Fibonacci(矩阵快速幂)
2015-07-20 18:03:06 来源: 作者: 【 】 浏览:2
Tags:hdu 1588 Gauss Fibonacci 矩阵 快速

Gauss Fibonacci

Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2090 Accepted Submission(s): 903


Problem Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. "
How good an opportunity that Gardon can not give up! The "Problem GF" told by Angel is actually "Gauss Fibonacci".
As we know ,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly, and Fibonacci is the crazy man who invented some numbers.

Arithmetic progression:
g(i)=k*i+b;
We assume k and b are both non-nagetive integers.

Fibonacci Numbers:
f(0)=0
f(1)=1
f(n)=f(n-1)+f(n-2) (n>=2)

The Gauss Fibonacci problem is described as follows:
Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i The answer may be very large, so you should divide this answer by M and just output the remainder instead.
Input The input contains serveral lines. For each line there are four non-nagetive integers: k,b,n,M
Each of them will not exceed 1,000,000,000.

Output For each line input, out the value described above.
Sample Input
2 1 4 100
2 0 4 100

Sample Output
21
12

Author DYGG
Source HDU “Valentines Day” Open Programming Contest 2007-02-14

题解及代码:

#include 
   
    
#include 
    
      #include 
     
       using namespace std; const int mod=1e9; struct mat { __int64 t[4][4]; void set() { memset(t,0,sizeof(t)); } } a,b,c; mat multiple(mat a,mat b,int n,int p) { int i,j,k; mat temp; temp.set(); for(i=0; i
      
       >=1; b=multiple(b,b,n,p); } return t; } void init1() { b.set(); b.t[0][1]=1; b.t[1][0]=1; b.t[1][1]=1; } void init2() { b.t[0][2]=1; b.t[1][3]=1; b.t[2][2]=1; b.t[3][3]=1; } int main() { int _k,_b,_n,M; while(cin>>_k>>_b>>_n>>M) { init1(); a=quick_mod(b,2,_b,M); init1(); b=quick_mod(b,2,_k,M); init2(); c=quick_mod(b,4,_n,M); __int64 ans=0; b.t[0][0]=c.t[0][2]; b.t[0][1]=c.t[0][3]; b.t[1][0]=c.t[1][2]; b.t[1][1]=c.t[1][3]; c=multiple(a,b,2,M); ans=c.t[1][0]; cout<
       
        



】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇POJ 2750 Potted Flower (单点修.. 下一篇hdu 3306 Another kind of Fibona..

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: