B:DZY Loves Modification
我们可以发现选择一个横行,竖行的大小顺序不变,只是每一个竖行都下降了p。
所以我们可以枚举选择了x个横行,y个竖行。
#include
#include
#include
#include
#include
#include
using namespace std; #define maxn 1100 #define LL __int64 int mp[maxn][maxn]; int hh[maxn]; int ll[maxn]; LL ph[1100000]; LL pl[1100000]; priority_queue
que; int n,m,k,p; void chu() { ph[0]=pl[0]=0; while(!que.empty())que.pop(); for(int i=1;i<=n;i++) { que.push(hh[i]); } for(int i=1;i<=k;i++) { int x=que.top(); que.pop(); ph[i]=ph[i-1]+(LL)x; x=x-p*m; que.push(x); } while(!que.empty())que.pop(); for(int i=1;i<=m;i++) { que.push(ll[i]); } for(int i=1;i<=k;i++) { int x=que.top(); que.pop(); pl[i]=pl[i-1]+(LL)x; x=x-p*n; que.push(x); } } int main() { while(~scanf("%d%d%d%d",&n,&m,&k,&p)) { memset(hh,0,sizeof(hh)); memset(ll,0,sizeof(ll)); for(int i=1;i<=n;i++) { for(int j=1;j<=m;j++) { scanf("%d",&mp[i][j]); hh[i]+=mp[i][j]; ll[j]+=mp[i][j]; } } chu(); LL ans=pl[k]; for(int i=1;i<=k;i++) { LL x=(LL)i*(LL)(k-i); x=(LL)x*(LL)p; ans=max(ans,pl[k-i]+ph[i]-x); } cout<
C:DZY Loves Fibonacci Numbers
主要是两个性质:
1,两个斐波那契数列相加依然是一个斐波那契数列。
2,根据斐波那契数列的前两项可以O(1)的时间内得出任意一个位置的斐波那契数,和任意长度的斐波那契数列的合。
剩下的东西就是简单的区间求和问题了。
#include
#include
#include
#include
#include
#include
#include
#include