题目链接:hdu 4869 Turn the pokers
题目大意:给定n和m,表示有n次翻牌的机会,m张牌,一开始所有的牌均背面朝上,每次翻牌可以选择xi张牌同时翻转。问说最后有多少种能。
解题思路:只要确定最后正面朝上的牌的个数即可。所以在读入xi的时候维护上下限即可。
#include
#include
#include
using namespace std; typedef long long ll; //typedef __int64 ll; const ll mod = 1e9+9; const int maxn = 1e5+10; int n, m, l, r; ll c[maxn]; ll pow_mod (ll x, int k) { ll ans = 1; while (k) { if (k&1) ans = ans * x % mod; x = x * x % mod; k /= 2; } return ans; } void init () { int x, p, q; l = r = 0; for (int i = 0; i < n; i++) { scanf("%d", &x); if (l >= x) p = l - x; else if (r >= x) p = ( (l&1) == (x&1) ? 0 : 1); else p = x - r; if (r + x <= m) q = r + x; else if (l + x <= m) q = ( ((l+x)&1) == (m&1) ? m : m-1); else q = 2 * m - l - x; l = p; r = q; } } ll solve () { c[0] = 1; ll ans = 0; for (int i = 0; i <= r; i++) { if (i) { if (m - i < i) c[i] = c[m-i]; else //c[i] = c[i-1] * (m-i+1) % mod * pow_mod(i, mod-2) % mod; c[i] = c[i-1] * ( (ll)(m-i+1) * pow_mod(i, mod-2) % mod) % mod; } if (i >= l && (i&1) == (l&1)) ans = (ans + c[i]) % mod; } return ans; } int main () { while (scanf("%d%d", &n, &m) == 2) { init(); printf("%lld\n", solve()); } return 0; }