Given a string containing just the characters '(' and ')', find the
length of the longest valid (well-formed) parentheses substring.For "(()", the
longest valid parentheses substring is "()", which has length = 2.
Another example is ")()())", where the longest valid parentheses substring
is "()()", which has length = 4.
解题思路:
这题可以用栈或者dp做,不过自己用栈写的O(N)的解法没有dp的快,所以说下dp的思路吧.
首先,看下状态的定义:
dp[i]:表示选了第i个字符能组成的最长有效括号个数. 通过上面状态的定义,很容易得出下面的状态转移方程:
这里解释下第二个状态方程的得来,当s[i]=")'时,tmp表示的就是与s[i]对应的那个字符,如果其满足条件
(tmp>=0 && s[tmp]=='(')那么就说明tmp到i这部分是有效括号匹配,而tmp之前的也有可能存在有效括号匹
配,所以需要将两者相加,需要注意的是,边界的地方.
解题代码:
class Solution {
public:
int longestValidParentheses(string s)
{
int n = s.size(), dp[n];
dp[0] = 0;
for (int i = 1; i < n; ++i)
{
int tmp = i - 1 - dp[i - 1];
if (s[i] == '(')
dp[i] = 0;
else if (tmp >= 0 && s[tmp] == '(')
dp[i] = dp[i - 1] + 2 + (tmp - 1 >= 0 ? dp[tmp - 1] : 0);
else
dp[i] = 0;
}
return *max_element(dp, dp + n);
}
};