设为首页 加入收藏

TOP

POJ 3370 Halloween treats 鸽巢原理 解题
2015-07-24 06:29:38 来源: 作者: 【 】 浏览:20
Tags:POJ 3370 Halloween treats 原理 解题

Halloween treats

和POJ2356差不多。

其实这样的数列可以有很多,也可以有不连续的,不过利用鸽巢原理就是方便找到了连续的数列,而且有这样的数列也必定可以找到。

#include 
  
   
#include 
   
     #include 
    
      int main() { int c, n; while (scanf("%d %d", &c, &n) && c) { int *neighbours = (int *) malloc(sizeof(int) * n); int *sumMod = (int *) malloc(sizeof(int) * (n+1)); int *iiMap = (int *) malloc(sizeof(int) * c); std::fill(iiMap, iiMap+c, -1); sumMod[0] = 0; int L = -1, R = -1; for (int i = 0; i < n; i++) scanf("%d", &neighbours[i]); for (int i = 0; i < n; i++) { sumMod[i+1] = (sumMod[i] + neighbours[i]) % c; if (sumMod[i+1] == 0) { L = 1, R = ++i;//下标从1起 break; } if (iiMap[sumMod[i+1]] != -1) { L = iiMap[sumMod[i+1]] + 2, R = ++i; //下标从1起 break; } iiMap[sumMod[i+1]] = i; } if (R != -1) { for (int i = L; i < R; i++) { printf("%d ", i); } printf("%d\n", R); } else puts("no sweets"); free(neighbours), free(iiMap), free(sumMod); } return 0; }
    
   
  




】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇LUA和C++绑定的一些天然的麻烦 下一篇nyoj 628 小媛在努力 [搜索]

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: