Problem J
Triple-Free Binary Strings
Input: Standard Input
Output: Standard Output
A binary string consists of ones and zeros. Given a binary string T, if there is no binary string S such that SSS (concatenate three copies of S together) is a substring of T, we say T is triple-free.
A pattern consists of ones, zeros and asterisks, where an asterisk(*) can be replaced by either one or zero. For example, the pattern 0**1 contains strings 0001, 0011, 0101, 0111, but not 1001 or 0000.
Given a pattern P, how many triple-free binary strings does it contain?
Input
Each line of the input represents a test case, which contains the length of pattern, n(0
The input terminates when n=0.
Output
For each test case, print the case number and the answer, shown below.
Sample Input Output for Sample Input
4 0**1 5 ***** 10 **01**01** 0 |
Case 1: 2 Case 2: 16 Case 3: 9 |
题意:给定一个串,*可以代表0,1有多少字串,没有3个连续相同的串。
思路:深搜加位运算,每次判断当前串如果有重复3个
#include
#include
const int N = 35; int n; char str[N]; bool judge(int state, int len) { int m = (1<
>len); int ss = (state&m); state = ((state&(~m))>>len); if (s == ss && ss == state) return true; return false; } int dfs(int state, int len) { int ans = 0, s = state; for (int i = 0; i <= len - 3; i ++) { if ((len - i) % 3 == 0 && judge(s, (len - i) / 3)) return 0; s = ((s&(~1))>>1); } if (len == n) return 1; if (str[len] == '0') ans += dfs(state, len + 1); else if (str[len] == '1') ans += dfs(state^(1<
字串就返回,然后数字可以用二进制数表示。
代码: