设为首页 加入收藏

TOP

S-Nim(hdu1536+SG函数)
2015-11-21 00:55:56 来源: 作者: 【 】 浏览:1
Tags:S-Nim hdu1536 函数

S-Nim

Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5317 Accepted Submission(s): 2288


?

Problem Description Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:


The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.


Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:


Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.


It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player's last move the xor-sum will be 0.

The xor-sum will change after every move.


Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
Input Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to eva luate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
Output For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.

Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0

Sample Output
LWW
WWL

?

?

题意:首先输入K 表示一个集合的大小 之后输入集合 表示对于这对石子只能去这个集合中的元素的个数

之后输入 一个m 表示接下来对于这个集合要进行m次询问

之后m行 每行输入一个n 表示有n个堆 每堆有n1个石子 问这一行所表示的状态是赢还是输 如果赢输入W否则L

思路:对于n堆石子 可以分成n个游戏 之后把n个游戏合起来就好了

?

转载请注明出处:寻找&星空の孩子

?

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1536

?

#include
  
   
#include
   
     #include
    
      using namespace std; //注意 S数组要按从小到大排序 SG函数要初始化为-1 对于每个集合只需初始化1遍 //n是集合s的大小 S[i]是定义的特殊取法规则的数组 int s[110],sg[10010],n; int SG_dfs(int x) { int i; if(sg[x]!=-1) return sg[x]; bool vis[110]; memset(vis,0,sizeof(vis)); for(i=0;i
     
      =s[i]) { SG_dfs(x-s[i]); vis[sg[x-s[i]]]=1; } } int e; for(i=0;;i++) if(!vis[i]) { e=i; break; } return sg[x]=e; } int main() { int i,m,t,num; while(scanf(%d,&n)&&n) { for(i=0;i
      
       

?

】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇POJ 1837:Balance 天平DP。。。 下一篇POJ 1745:Divisibility 枚举某一..

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: