?
A Knight's Journey
| Time Limit: 1000MS |
? |
Memory Limit: 65536K |
| Total Submissions: 34660 |
? |
Accepted: 11827 |
?
Description
Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line containing Scenario #i:, where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
Sample Input
3
1 1
2 3
4 3
Sample Output
Scenario #1:
A1
Scenario #2:
impossible
Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4
Source
TUD Programming Contest 2005, Darmstadt, Germany
?
题目链接:http://poj.org/problem?id=2488
?
题目大意:一个有n*m个格子的棋盘,模拟马走“日”字,求一个棋盘的所有格子能否被走完,如果能,求走的路径,即走格子的先后顺序,如果有多种情况,按字典序最小的情况。用横纵坐标表示格子位置,横坐标是字母,纵坐标是数字。
?
解题思路:DFS由第一个格子开始搜,因为每步只能走“日”字,所以每步有八个方向,因为按字典序最小的走,枚举方向时也按字典序。找到解的返回过程中标记路径。
?
代码如下:
?
#include
#include
int dx[8]={-2,-2,-1,-1,1,1,2,2};//按字典序枚举8个方向 int dy[8]={-1,1,-2,2,-2,2,-1,1}; int xx[26]={'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'}; char ansx[28]; //记录横坐标路径 int ansy[28]; //记录纵坐标路径 int sum,m,n,j; bool p; int a[28][28],vis[28][28]; void dfs(int x,int y,int cnt) { if(cnt==sum) //已走完所有格子 { ansx[j]=xx[x]; ansy[j++]=y+1; p=true; return; } for(int i=0;i<8;i++) { if(x+dx[i]<0||x+dx[i]>=n||y+dy[i]<0||y+dy[i]>=m) continue; if(vis[x+dx[i]][y+dy[i]]) continue; vis[x+dx[i]][y+dy[i]]=1; dfs(x+dx[i],y+dy[i],cnt+1); if(p) //若成功走完格子,往前标记每步路径 { ansx[j]=xx[x]; ansy[j++]=y+1; return; } vis[x+dx[i]][y+dy[i]]=0; } } int main() { int t; scanf(%d,&t); for(int cnt=1;cnt<=t;cnt++) { p=false,j=0; memset(vis,0,sizeof(vis)); vis[0][0]=1; scanf(%d%d,&m,&n); sum=n*m; dfs(0,0,1); printf(Scenario #%d: , cnt); if(!p) printf(impossible ); else //输出路径 { for(int i=j-1;i>=0;i--) printf(%c%d,ansx[i],ansy[i]); printf( ); } if(cnt
?
?