Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST’s total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
Try to utilize the property of a BST.Show More Hint
Credits:
Special thanks to @ts for adding this problem and creating all test cases.
两种思路:
1.空间换时间
BST的特性是,如果按照中序排列,得到的递增序;所以可以使用一个stack进行中序遍历,直到找到第K个元素;
2. 树树的结点数
对于每个节点root,计算以它为根节点的树的节点数,计作S。
如果S==K,返回root->val;
如果S > K,在root的左子树里面查找第K小元素;
如果S
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int kthSmallest(TreeNode root, int k) {
Stack
s = new Stack<>(); TreeNode p=root; s.push(p); int cnt=0; do{ while(p!=null){ s.push(p); p=p.left; } TreeNode top=s.pop(); cnt++; if(cnt==k){ return top.val; } p=top.right; }while(!s.empty()); return 0; } }
思路2代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
int left=findNodesSum(root->left);
if(left+1==k){
return root->val;
}else if(left+1
right,k-left-1); }else{ return kthSmallest(root->left,k); } } int findNodesSum(TreeNode* root){ if(!root){ return 0; } int sum = findNodesSum(root->left)+findNodesSum(root->right)+1; return sum; } };
?