Given an integer array of size n, find all elements that appear more than ? n/3 ? times. The algorithm should run in linear time and in O(1) space.
解题思路
摩尔投票法。投票法的核心是找出两个候选众数进行投票,需要两遍遍历,第一遍历找出两个候选众数,第二遍遍历重新投票验证这两个候选众数是否为众数即可。
实现代码
C++:
class Solution {
public:
vector
majorityElement(vector
& nums) { vector
res; int m = 0, n = 0, cm = 0, cn = 0; for (int i = 0; i < nums.size(); i++) { if (nums[i] == m) { cm++; } else if (nums[i] == n) { cn++; } else if (cm == 0) { m = nums[i]; cm = 1; } else if (cn == 0) { n = nums[i]; cn = 1; } else { --cm; --cn; } } cm = cn = 0; for (auto& a : nums) { if (a == m) { cm++; } else if (a== n) { cn++; } } if (cm > nums.size() / 3) { res.push_back(m); } if (cn > nums.size() / 3) { res.push_back(n); } return res; } };
Java:
public class Solution {
public List
majorityElement(int[] nums) { List
res = new ArrayList
(); int m = 0, n = 0, cm = 0, cn = 0; for (int a : nums) { if (a == m) { ++cm; } else if (a == n) { ++cn; } else if (cm == 0) { m = a; cm = 1; } else if (cn == 0) { n = a; cn = 1; } else { --cm; --cn; } } cm = cn = 0; for (int a : nums){ if (a == m) { ++cm; } else if (a == n) { ++cn; } } if (cm > nums.length / 3) { res.add(m); } if (cn > nums.length / 3) { res.add(n); } return res; } }
?