Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
这道题和前面很多题都好像。
解法一:
转态A[i][j]可以表示左上点到grid[i][j]作为右下角的路径的最小和,那么它只依赖于A[i-1][j]和A[i][j-1]。状态转移方程是:
A[i][j]=min{A[i-1][j],A[i][j-1]}+grid[i][j]
需要注意的是边界条件的处理,但是可以将A[i][j]的维数设置的比grid[i][j]的维数大1,这样就可以将边界统一起来了。
时间复杂度是O(M*N),M是矩阵的宽,N是矩阵的高。空间复杂度是O(M*N)。
runtime:28ms
class Solution {
public:
int minPathSum(vector
>& grid) { int height=grid.size(); int width=grid[0].size(); int current=0; vector
> mask(height+1,vector
(width+1,INT_MAX)); for(int i=0;i
解法二:
解法一在空间上是可以做优化的,可以将空间复杂度降低为O(min(M,N))。
因为A[i][j]只依赖于A[i-1][j]和A[i][j-1],所以可以只使用一个vector来存储即可。
下面是按列进行扫描的算法,代码来自:
https://leetcode.com/discuss/38360/easy-dp-solution-in-c-with-detailed-explanations-o-n-space
int minPathSum(vector
>& grid) { int m = grid.size(); int n = grid[0].size(); vector
cur(m, grid[0][0]); for (int i = 1; i < m; i++) cur[i] = cur[i - 1] + grid[i][0]; for (int j = 1; j < n; j++) { cur[0] += grid[0][j]; for (int i = 1; i < m; i++) cur[i] = min(cur[i - 1], cur[i]) + grid[i][j]; } return cur[m - 1]; }