设为首页 加入收藏

TOP

POJ1284---Primitive Roots(求原根个数, 欧拉函数)
2015-11-21 01:00:05 来源: 作者: 【 】 浏览:1
Tags:POJ1284---Primitive Roots 个数 函数

Description
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, …, p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.

Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.

Output
For each p, print a single number that gives the number of primitive roots in a single line.

Sample Input

23
31
79

Sample Output

10
8
24

Source

求模素数p的原根个数
关于原根请看这里:
原根

/*************************************************************************
    > File Name: POJ1284.cpp
    > Author: ALex
    > Mail: www.2cto.com
    > Created Time: 2015年06月04日 星期四 16时04分32秒
 ************************************************************************/

#include 
   
     #include 
    
      #include 
     
       #include 
      
        #include 
       
         #include 
        
          #include 
         
           #include 
          
            #include 
           
             #include 
            
              #include
              #include 
              
                #include 
               
                 #include 
                
                  using namespace std; const double pi = acos(-1.0); const int inf = 0x3f3f3f3f; const double eps = 1e-15; typedef long long LL; typedef pair 
                 
                   PLL; int phi[100000]; int minDiv[100000]; void geteuler() { for (int i = 1; i <= 70000; ++i) { minDiv[i] = i; } for (int i = 2; i <= 70000; ++i) { if (minDiv[i] == i) { if (70000 / i < i) { break; } for (int j = i * i; j <= 70000; j += i) { minDiv[j] = i; } } } phi[1] = 1; for (int i = 2; i <= 70000; ++i) { phi[i] = phi[i / minDiv[i]]; if ((i / minDiv[i]) % minDiv[i]) { phi[i] *= (minDiv[i] - 1); } else { phi[i] *= minDiv[i]; } } } int main() { geteuler(); int n; while (cin >> n) { cout << phi[n - 1] << endl; } return 0; }
                 
                
               
              
            
           
          
         
        
       
      
     
    
   
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇sgu251:Polymania(构造) 下一篇LightOJ1007---Mathematically Ha..

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: