设为首页 加入收藏

TOP

HDU-2082(母函数)
2015-11-21 01:01:28 来源: 作者: 【 】 浏览:1
Tags:HDU-2082 函数

找单词

Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2739 Accepted Submission(s): 1941
?

Problem Description 假设有x1个字母A, x2个字母B,..... x26个字母Z,同时假设字母A的价值为1,字母B的价值为2,..... 字母Z的价值为26。那么,对于给定的字母,可以找到多少价值<=50的单词呢?单词的价值就是组成一个单词的所有字母的价值之和,比如,单词ACM的价值是1+3+14=18,单词HDU的价值是8+4+21=33。(组成的单词与排列顺序无关,比如ACM与CMA认为是同一个单词)。

?

Input 输入首先是一个整数N,代表测试实例的个数。 然后包括N行数据,每行包括26个<=20的整数x1,x2,.....x26.

?

Output 对于每个测试实例,请输出能找到的总价值<=50的单词数,每个实例的输出占一行。

?

Sample Input 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 2 6 2 10 2 2 5 6 1 0 2 7 0 2 2 7 5 10 6 10 2 10 6 1 9

?

Sample Output 7 379297

?

Source 2006/1/15 ACM程序设计期末考试

?

Recommend 其他相同类型的链接,大牛的博客写的很好http://www.cnblogs.com/wally/archive/2012/07/13/hdu1028_1085_1171_. html#undefined

生成函数是说,构造这么一个多项式函数g(x),使得x的n次方系数为f(n)。

对于母函数,看到最多的是这样两句话:

1.“把组合问题的加法法则和幂级数的乘幂对应起来。”

2.“把离散数列和幂级数一 一对应起来,把离散数列间的相互结合关系对应成为幂级数间的运算关系,最后由幂级数形式来确定离散数列的构造。 “

?

例子:

有1克、2克、3克、4克砝码各一枚,问能称出哪几种重量?每种重量各有几种方案?

下面是用母函数解决这个问题的思路:

首先,我们用X表示砝码,X的指数表示砝码的重量。那么,如果用函数表示每个砝码可以称的重量,

1个1克的砝码可以用函数X^0 + X^1表示,

1个2克的砝码可以用函数X^0 + X^2表示,

依次类推。

如果我们把上面2个多项式相乘,可以得到X^0 + X^1 + X^2 + X^3。继续把它与X^0 + X^3相乘,得到X^0 + X^1 + X^2 + 2*X^3 + X^4 + X^5 + X^6。

接着把它与X^0+X^4相乘,最后得到X^0 + X^1 + X^2 + 2*X^3 + 2*X^4 + 2*X^5 + 2*X^6 + 2*X^7 + X^8 + X^9 + X^10。

由于X的指数表示的是重量,所以,在相乘时,根据幂的运算法则(同底幂相乘,指数相加),得到的结果正是所有的方案。而且,每个X前面的系数代表它有几种方案。

需要注意的是,如果有2个1克的砝码,应该用X^0 + X^1 + X^2表示,而不是X^0 + 2*X^1。

?

母函数还可以解决其他问题,比如,整数划分。

整数划分是个很经典的问题,划分规则就不再细述,直接说思路。与上面的问题相比,每种砝码的个数不再是1个,而是无限个。于是,

1克的砝码可以用X^0 + X^1 + X^2 + X^3 ……表示,

2克的砝码可以用X^0 + X^2 + X^4 + X^6……表示,

3克的砝码可以用X^0 + X^3 + X^6 + X^9……表示,

依次类推。

相乘后求出X^n的系数,就是结果。

?

总而言之,解决此类问题,只要模拟好2个多项式相乘就好了。

大概思路是开2个数组,c1[ ]保存当前得到的多项式各项系数,c2[ ]保存每次计算时的临时结果,当每次计算完毕后,把它赋给c1,然后c2清零。

计算的时候,开3层for循环。最外层,记录它正在与第几个多项式相乘。第二层,表示c1中的每一项,第三层表示后面被乘多项式中的每一项。

?

代码:

?

#include
  
   
#include
   
     #include
    
      #include
      #include
      
        #include
       
         #define mem(a,b) memset(a,b,sizeof(a)) using namespace std; typedef long long ll; typedef unsigned long long llu; const int maxd=200; //--------------------- llu c1[maxd],c2[maxd]; int x[30]; int n; int main() { freopen("1.txt","r",stdin); int kase; scanf("%d",&kase); while(kase--) { //int cnt=0; for(int i=1; i<=26; ++i) scanf("%d",&x[i]); mem(c1,0),mem(c2,0); c1[0]=1; for(int i=1; i<=26; ++i) { for(int j=0; j<=50; ++j) { for(int k=0; k+j<=50 && k<=x[i]*i; k+=i) c2[k+j]+=c1[j]; } for(int k=0; k<=50; ++k) c1[k]=c2[k],c2[k]=0; } llu sum=0; for(int i=1; i<=50; ++i) sum+=c1[i]; printf("%llu\n",sum); } return 0; } 
       
      
    
   
  


?

】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇UVALive 6439--Pasti Pas! 下一篇hdoj1285 拓扑排序

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: