Kia's Calculation
Time Limit: 2000/1000 MS (
Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 513 Accepted Submission(s): 142
?
?
Problem Description
Doctor Ghee is teaching Kia how to calculate the sum of two integers. But Kia is so careless and alway forget to carry a number when the sum of two digits exceeds 9. For example, when she calculates 4567+5789, she will get 9246, and for 1234+9876, she will get 0. Ghee is angry about this, and makes a hard problem for her to solve:
Now Kia has two integers A and B, she can shuffle the digits in each number as she like, but leading zeros are not allowed. That is to say, for A = 11024, she can rearrange the number as 10124, or 41102, or many other, but 02411 is not allowed.
After she shuffles A and B, she will add them together, in her own way. And what will be the maximum possible sum of A "+" B ?
?
?
Input
The rst line has a number T (T <= 25) , indicating the number of test cases.
For each test case there are two lines. First line has the number A, and the second line has the number B.
Both A and B will have same number of digits, which is no larger than 106, and without leading zeros.
?
?
Output
For test case X, output "Case #X: " first, then output the maximum possible sum without leading zeros.
?
?
Sample Input
1
5958
3036
?
?
Sample Output
Case #1: 8984
?
?
Source
2013 ACM/ICPC Asia Regional Online —— Warmup2
?
?
题意: 有2个合法的整数。 长度为 10^6。 数字的每一位都能移动, 但移动后的整数一定要是合法的, 即无前导零。 使得 A + B 最大
?
思路:贪心算法
import java.io.*;
import java.util.*;
public class Main {
BufferedReader bu;
PrintWriter pw;
int n;
int[] a = new int[12];
int[] b = new int[12];
public static void main(String[] args) throws IOException {
new Main().work();
}
void work() throws IOException {
bu = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new OutputStreamWriter(System.out), true);
n = Integer.parseInt(bu.readLine());
for (int p = 1; p <= n; p++) {
String s1 = bu.readLine();
String s2 = bu.readLine();
Arrays.fill(a, 0);
Arrays.fill(b, 0);
for (int i = 0; i < s1.length(); i++) {
a[s1.charAt(i) - '0']++;
}
for (int i = 0; i < s2.length(); i++) {
b[s2.charAt(i) - '0']++;
}
//获取第一个最大的数字
int t = getFirst();
pw.print("Case #"+p+": ");
pw.print(t);
if (t == 0) {//如果第一个数字为0,则后面的数字,都为0
pw.println();
continue;
}
// 获取后面的数字
for (int i = 9; i >= 0; i--) {
int ans = 0;
for (int j = 0; j <= 9; j++) {
if ((i - j >= 0) && a[j] != 0 && b[i - j] != 0) {
int m = Math.min(a[j], b[i - j]);
ans += m;
a[j] -= m;
b[i - j] -= m;
}
if ((10 + i - j <= 9) && a[j] != 0 && b[10 + i - j] != 0) {
int m = Math.min(a[j], b[10 + i - j]);
ans += m;
a[j] -= m;
b[10 + i - j] -= m;
}
}
for (int j = 1; j <= ans; j++) {
pw.print(i);
}
}
pw.println();
}
}
//获取第一个数字
int getFirst() {
int i, j;
for (i = 9; i >= 1; i--) {
for (j = 1; j <= 9; j++) {
if ((i - j > 0) && a[j] != 0 && b[i - j] != 0) {
a[j]--;
b[i - j]--;
break;
}
if ((10 + i - j <= 9) && a[j] != 0 && b[10 + i - j] != 0) {
a[j]--;
b[10 + i - j]--;
break;
}
}
if (j <= 9)
break;
}
return i;
}
}
?