题意:给定n个只有大写字母组成的字符串,选取尽可能多的字符串,使得这些字符串中每个字母的个数都是偶数。n<=24
思路:直接枚举每个字符串的选或不选,复杂度是O(2^n)。其实还有更简便的方法。
对于每个字母,其实具体出现了多少次并不重要,重要的是奇数次还是偶数次,我们用0对应奇数次,1对应偶数次。对于每个字符串,我们就可以计算出对应的二进制数,方法如下。如果A出现奇数次,那么二进制数第一个位置为1,偶数次为0;如果B出现奇数次,那么二进制数第二个位置为1,偶数次为0……以此类推,每个位置都有一个对应的0或1。这样就组成了一个二进制数。所以我们就可以将题意转化为找到尽量多的数字,使得他们的异或和为0。
直接枚举复杂度是O(2^n),但是我们不妨枚举前n/2个数字的选或不选,将所有可以得到的异或值存在一个STL的map中(键为异或和,值为得到这个异或和的选或不选的状态集合,对于同一个键,保留选取的数字最多的情况),然后枚举后n/2个数字的选或不选,计算出每个异或和,在map中查找是否有异或和等的键(因为两个相同的数字异或值为0),更新答案。
这样的复杂度只有O(2^[n/2] * logn)。
#include
#include