设为首页 加入收藏

TOP

UVA 108 Maximum Sum(子矩阵最大和)
2014-11-23 20:10:28 来源: 作者: 【 】 浏览:4
Tags:UVA 108 Maximum Sum 矩阵 大和

Maximum Sum

Background
A problem that is simple to solve in one dimension is often much more difficult to solve in more than one dimension. Consider satisfying a boolean expression in conjunctive normal form in which each conjunct consists of exactly 3 disjuncts. This problem (3-SAT) is NP-complete. The problem 2-SAT is solved quite efficiently, however. In contrast, some problems belong to the same complexity class regardless of the dimensionality of the problem.


The Problem
Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. A sub-rectangle is any contiguous sub-array of size or greater located within the whole array. As an example, the maximal sub-rectangle of the array:


is in the lower-left-hand corner:


and has the sum of 15.


Input and Output
The input consists of an array of integers. The input begins with a single positive integer N on a line by itself indicating the size of the square two dimensional array. This is followed by integers separated by white-space (newlines and spaces). These integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.). N may be as large as 100. The numbers in the array will be in the range [-127, 127].


The output is the sum of the maximal sub-rectangle.


Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output

15题意:给定一个矩阵。要求出一个和最大的子矩阵之和。。


思路:和一维的求最大和子序列有点类似。不过这是二维的。直接暴力会超时。所以每次进行操作的时候。要把值保留下来。以备给后面使用。这样可以大大减少所用的时间。。


代码:


#include 
#include 
#include 
int n, num[105][105], Max, he, sum[105];

void init() {
    Max = -INT_MAX;
    for (int i = 0; i < n ; i ++)
	for (int j = 0 ; j < n ; j ++)
	    scanf("%d", &num[i][j]);
}

int solve() {
    for (int i = 0; i < n ; i ++) {
	memset(sum, 0, sizeof(sum));
	for (int j = i; j < n; j ++) {
	    he = 0;
	    for (int k = 0; k < n; k ++) {
		sum[k] += num[j][k];
		if (he >= 0)//这步跟求最大子序列和一个原理。。如果加到是负数的时候,是会使总和减少的。所以直接从下一个位置开始作为起点。
		    he += sum[k];
		else
		    he = sum[k];
		if (Max < he)
		    Max = he;
	    }
	}
    }
    return Max;
}

int main() {
    while (~scanf("%d", &n)) {
	init();
	printf("%d\n", solve());
    }
    return 0;
}

】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇hdu2962之二分+最短 下一篇hdu 1385 Minimum Transport Cost..

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

·微服务 Spring Boot (2025-12-26 18:20:10)
·如何调整 Redis 内存 (2025-12-26 18:20:07)
·MySQL 数据类型:从 (2025-12-26 18:20:03)
·Linux Shell脚本教程 (2025-12-26 17:51:10)
·Qt教程,Qt5编程入门 (2025-12-26 17:51:07)