计算几何+最短路
最短路是套的模版。。= =

毕竟不是自己写的。。模版上的点竟然是从0开始的。
难在建图。图中,比如2和12点,其间如果没有任何线段阻挡,那么边权是他们的直线距离,如果有线段阻挡,边权是inf。
枚举每两个点,用其组成的线段与其他所有线段判断,如果相交则边权inf,如果不相交距离是其直线距离。
#include
#include
#define eps 1e-8
#define zero(x) (((x)>0 (x):-(x)) eps;
}
//判两点在线段异侧,点在线段上返回0
bool opposite_side(point p1, point p2, line l)
{
return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) < -eps;
}
//判两直线平行
bool parallel(line u, line v)
{
return zero((u.a.x - u.b.x)*(v.a.y - v.b.y) - (v.a.x - v.b.x)*(u.a.y - u.b.y));
}
//判两直线垂直
bool perpendicular(line u, line v)
{
return zero((u.a.x - u.b.x)*(v.a.x - v.b.x) + (u.a.y - u.b.y)*(v.a.y - v.b.y));
}
//判两线段相交,包括端点和部分重合
bool intersect_in(line u, line v)
{
if (!dots_inline(u.a, u.b, v.a) || !dots_inline(u.a, u.b, v.b))
return !same_side(u.a, u.b, v) && !same_side(v.a, v.b, u);
return dot_online_in(u.a, v) || dot_online_in(u.b, v) || dot_online_in(v.a, u) || dot_online_in(v.b, u);
}
bool intersect_ex(line u, line v)
{
return opposite_side(u.a, u.b, v) && opposite_side(v.a, v.b, u);
}
//单源最短路径,bellman_ford算法,邻接阵形式,复杂度O(n^3)
//求出源s到所有点的最短路经,传入图的大小n和邻接阵mat
//返回到各点最短距离min[]和路径pre[],pre[i]记录s到i路径上i的父结点,pre[s]=-1
//可更改路权类型,路权可为负,若图包含负环则求解失败,返回0
//优化:先删去负边使用dijkstra求出上界,加速迭代过程
#define MAXN 200
#define inf 1000000000
typedef double elem_t;
int bellman_ford(int n, elem_t mat [][MAXN], int s, elem_t* min, int* pre){
int v[MAXN], i, j, k, tag;
for (i = 0; i < n; i++)
min[i] = inf, v[i] = 0, pre[i] = -1;
for (min[s] = 0, j = 0; j < n; j++){
for (k = -1, i = 0; i < n; i++)
if (!v[i] && (k == -1 || min[i] < min[k]))
k = i;
for (v[k] = 1, i = 0; i < n; i++)
if (!v[i] && mat[k][i] >= 0 && min[k] + mat[k][i] < min[i])
min[i] = min[k] + mat[pre[i] = k][i];
}
for (tag = 1, j = 0; tag && j <= n; j++)
for (tag = i = 0; i < n; i++)
for (k = 0; k < n; k++)
if (min[k] + mat[k][i] < min[i])
min[i] = min[k] + mat[pre[i] = k][i], tag = 1;
return j <= n;
}
int main()
{
line l[100];
point p[200];
int n;
while (std::cin >> n && (n != -1))
{
int j = -1;
int k = 0;
p[0].x = 0.0, p[0].y = 5.0;
for (int i = 0; i < n; i++)
{
double a, b, c, d, e;
std::cin >> a >> b >> c >> d >> e;
l[++j].a.x = a, l[j].a.y = 0.0;
l[j].b.x = a, l[j].b.y = b;
l[++j].a.x = a, l[j].a.y = c;
l[j].b.x = a, l[j].b.y = d;
l[++j].a.x = a, l[j].a.y = e;
l[j].b.x = a, l[j].b.y = 10.0;
p[++k].x = a, p[k].y = 0.0;
p[++k].x = a, p[k].y = b;
p[++k].x = a, p[k].y = c;
p[++k].x = a, p[k].y = d;
p[++k].x = a, p[k].y = e;
p[++k].x = a, p[k].y = 10.0;
}
p[++k].x = 10.0, p[k].y = 5.0;
/*for (int i = 0; i <= j; i++)
{
std::cout << l[i].a.x << ' ' << l[i].a.y << " to " << l[i].b.x << ' ' << l[i].b.y << std::endl;
}
for (int i = 1; i <= k; i++)
{
std::cout << i << ' '<