这个题乍眼一看好像很简单,然后我就认为u、v、w只要有全部比另外一个人小的就不能win,否则就能win,但是这个思路只对了一半
不能win的结论是正确的,但是win的结论不止排除这一个条件
将这个人与其他人的条件列式
如果都win的话,则满足 x/v+y/u+(k-x-y)/w(i的)
#include
#include
#include
using namespace std;
const double eps = 1e-8;
struct Point
{
double x,y;
Point(double x=0,double y=0):x(x),y(y) {}
};
typedef Point Vector;
Vector operator - (Point A, Point B)
{
return Vector(A.x-B.x, A.y-B.y);
}
struct Line
{
Point p;
Vector v;
double ang;
Line() {}
Line(Point p,Vector v):p(p),v(v)
{
ang=atan2(v.y,v.x);
}
bool operator < (const Line& L) const
{
return ang0;
}
Point GetIntersection(Line a, Line b)
{
Vector u = a.p-b.p;
double t = Cross(b.v, u)/Cross(a.v, b.v);
return Point(a.p.x+a.v.x*t, a.p.y+a.v.y*t);
}
int BPMJ(Line *L, int n, Point *poly)
{
sort(L,L+n);
int first,last;
Point *p = new Point[n];
Line *q = new Line[n];
q[first=last=0] = L[0];
for(int i=1; i=u[j] && v[i]>=v[j] && w[i]>=w[j])
continue;
else if(j!=i)
{
double A=k/v[j]-k/v[i]-k/w[j]+k/w[i];
double B=k/u[j]-k/u[i]-k/w[j]+k/w[i];
double C=k/w[j]-k/w[i];
if(fabs(A)>fabs(B))
p=Point(-C/A,0);
else
p=Point(0,-C/B);
Vector v(B,-A);
L[ct++] = Line(p,v);
}
}
L[ct++] = Line(Point(0,0), Vector(0,-1));
L[ct++] = Line(Point(0,0), Vector(1,0));
L[ct++] = Line(Point(0,1), Vector(-1,1));
if(BPMJ(L,ct,poly))printf("Yes\n");
else printf("No\n");
}
}
}
return 0;
}
#include
#include
#include
using namespace std;
const double eps = 1e-8;
struct Point
{
double x,y;
Point(double x=0,double y=0):x(x),y(y) {}
};
typedef Point Vector;
Vector operator - (Point A, Point B)
{
return Vector(A.x-B.x, A.y-B.y);
}
struct Line
{
Point p;
Vector v;
double ang;
Line() {}
Line(Point p,Vector v):p(p),v(v)
{
ang=atan2(v.y,v.x);
}
bool operator < (const Line& L) const
{
return ang0;
}
Point GetIntersection(Line a, Line b)
{
Vector u = a.p-b.p;
double t = Cross(b.v, u)/Cross(a.v, b.v);
return Point(a.p.x+a.v.x*t, a.p.y+a.v.y*t);
}
int BPMJ(Line *L, int n, Point *poly)
{
sort(L,L+n);
int first,last;
Point *p = new Point[n];
Line *q = new Line[n];
q[first=last=0] = L[0];
for(int i=1; i=u[j] && v[i]>=v[j] && w[i]>=w[j])
continue;
else if(j!=i)
{
double A=k/v[j]-k/v[i]-k/w[j]+k/w[i];
double B=k/u[j]-k/u[i]-k/w[j]+k/w[i];
double C=k/w[j]-k/w[i];
if(fabs(A)>fabs(B))
p=Point(-C/A,0);
else
p=Point(0,-C/B);
Vector v(B,-A);
L[ct++] = Line(p,v);
}
}
L[ct++] = Line(Point(0,0), Vector(0,-1));
L[ct++] = Line(Point(0,0), Vector(1,0));
L[ct++] = Line(Point(0,1), Vector(-1,1));
if(BPMJ(L,ct,poly))printf("Yes\n");
else printf("No\n");
}
}
}
return 0;
}