给你一棵树
要你在树上的一些点上放置士兵,放的节点上面是一个
问你怎样放最少的能使所有的边被照顾到,一个士兵可以同时照顾和他所处节点相连的边
解题思路:
最少点覆盖问题
可以用树形DP解决
我们把无根树抽象成一棵有根树,0为树根
对于任意一个节点i来说,设dp[i][0]表示在该节点不放士兵
dp[i][1]表示在该节点放置士兵
那么结合他的子节点就可以得到状态转移方程
dp[i][1] = sum(dp[k][0])+1 k为i的子节点,下同,因为本节点没放,则子节点一定要放
dp[i][0] = sum( min(dp[k][0],dp[k][1]) ) 因为本节点放了,所以取子节点放和不放的最小值
最后答案就是min( dp[0][0] ,dp[0][1] )
虽然是一道很简单的树形DP,但是对与学习树形DP很有启发意义
下面上代码:
#include#include #include #include #include #include using namespace std; const int maxn = 1600; int dp[maxn][2]; int n; vector tree[maxn]; int min(int a,int b) { return a