For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
code :
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode *root) {
// Note: The Solution object is instantiated only once and is reused by each test case.
if(root == NULL)
return true;
int ld = treedepth(root->left);
int rd = treedepth(root->right);
if(abs(ld - rd) > 1)
return false;
return isBalanced(root->left) && isBalanced(root->right);
}
int treedepth(TreeNode *root)
{
if(root == NULL)
return 0;
int ldepth = treedepth(root->left);
int rdepth = treedepth(root->right);
return ldepth >
rdepth ldepth+1:rdepth+1;
}
};
上面算法效率低,因为重复访问了结点,优化下,改成后序遍历即可。
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode *root) {
// Note: The Solution object is instantiated only once and is reused by each test case.
int depth = 0;
return isbalance(root, depth);
}
bool isbalance(TreeNode *root, int &depth)
{
if(root == NULL)
{
depth = 0;
return true;
}
int ld,rd;
if( isbalance(root->left,ld) && isbalance(root->right,rd))
{
if( abs(ld - rd) > 1)
{
return false;
}
depth = ld > rd ld + 1 : rd + 1;
return true;
}
}
};