Balanced Binary Tree

2014-11-23 23:36:42 · 作者: · 浏览: 3
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
code :
/** 
 * Definition for binary tree 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {} 
 * }; 
 */  
class Solution {  
public:  
    bool isBalanced(TreeNode *root) {  
        // Note: The Solution object is instantiated only once and is reused by each test case.  
        if(root == NULL)  
            return true;  
        int ld = treedepth(root->left);  
        int rd = treedepth(root->right);  
        if(abs(ld - rd) > 1)  
            return false;  
        return isBalanced(root->left) && isBalanced(root->right);  
    }  
      
    int treedepth(TreeNode *root)  
    {  
        if(root == NULL)   
            return 0;  
        int ldepth = treedepth(root->left);  
        int rdepth = treedepth(root->right);  
        return ldepth >
rdepth ldepth+1:rdepth+1; } };

上面算法效率低,因为重复访问了结点,优化下,改成后序遍历即可。
/** 
 * Definition for binary tree 
 * struct TreeNode { 
 *     int val; 
 *     TreeNode *left; 
 *     TreeNode *right; 
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {} 
 * }; 
 */  
class Solution {  
public:  
    bool isBalanced(TreeNode *root) {  
        // Note: The Solution object is instantiated only once and is reused by each test case.  
        int depth = 0;  
        return isbalance(root, depth);  
          
    }  
    bool isbalance(TreeNode *root, int &depth)  
    {  
        if(root == NULL)  
        {  
            depth = 0;  
            return true;  
        }  
        int ld,rd;  
        if( isbalance(root->left,ld) && isbalance(root->right,rd))  
        {  
            if( abs(ld - rd) > 1)  
            {  
                return false;  
            }  
            depth = ld > rd   ld + 1 : rd + 1;  
            return true;  
        }  
    }  
      
      
};