解题思路:最短路问题,无需考虑联通整张图的最小距离,只需要记录下第n - m - 1个加入的边,输出保留两位小数。
#include#include #include #include using namespace std; const int N = 505; const int M = 250005; struct state { double dis; int l; int r; }s[M];; int n, m, cnt, f[N], x[N], y[N]; double ans; int getfather(int c) { return c == f[c] c : f[c] = getfather(f[c]); } void init() { cnt = 0; scanf("%d%d", &m, &n); for (int i = 0; i < n; i++) { f[i] = i; // Init f; scanf("%d%d", &x[i], &y[i]); for (int j = 0; j < i; j++) { s[cnt].dis = sqrt((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * ( y[i] - y[j])); s[cnt].l = i; s[cnt].r = j; cnt++; } } } bool cmp(const state& a, const state& b) { return b.dis - a.dis > 1e-9; } void kruskal() { sort(s, s + cnt, cmp);; int t = n - m - 1; for (int i = 0; i < cnt; i++) { int p = getfather(s[i].l), q = getfather(s[i].r); if (p != q) { ans = s[i].dis; if (t) { t--; f[q] = p; } else return ; } } } int main () { int cas; scanf("%d", &cas); while (cas--) { init(); kruskal(); printf("%.2lf\n", ans); } return 0; }