POJ 1755 Triathlon 半平面交

2014-11-24 01:24:05 · 作者: · 浏览: 4
题意:铁人三项比赛,给出n个人进行每一项的速度vi, ui, wi; 对每个人判断,通过改变3项比赛的路程,是否能让该人获胜(严格获胜)。
思路:题目实际上是给出了n个式子方程,Ti = Ai * x + Bi * y + Ci * z , 0 < i < n
要判断第i个人能否获胜,即判断不等式组 Tj - Ti > 0, 0 < j < n && j != i 有解
即 (Aj - Ai)* x + (Bj - Bi) * y + ( Cj - Ci ) * z > 0, 0 < j < n && j != i 有解
由于 z > 0, 所以 可以两边同时除以 z, 将 x / z, y / z 分别看成 x和 y , 这样就化三维为二维,可用半平面交判断是否存在解了,
对每个人构造一次,求一次半平面交即可。
关键是根据这个斜率式子怎么搞成向量的。需要想一想。
然后注意的是半平面交出来是单独一个点是不行的。
因为题目要求的是严格胜出
#include   
#include   
#include   
#include   
#include   
#include   
#include   
#include   
#include   
#include   
#include   
#define MAXN 111111  
#define MAXM 211111  
#define PI acos(-1.0)  
#define eps 1e-8  
#define INF 1e10  
using namespace std;  
int dblcmp(double d)  
{  
    if (fabs(d) < eps) return 0;  
    return d > eps   1 : -1;  
}  
struct point  
{  
    double x, y;  
    point(){}  
    point(double _x, double _y):  
    x(_x), y(_y){};  
    void input()  
    {  
        scanf("%lf%lf",&x, &y);  
    }  
    double dot(point p)  
    {  
        return x * p.x + y * p.y;  
    }  
    double distance(point p)  
    {  
        return hypot(x - p.x, y - p.y);  
    }  
    point sub(point p)  
    {  
        return point(x - p.x, y - p.y);  
    }  
    double det(point p)  
    {  
        return x * p.y - y * p.x;  
    }  
    bool operator == (point a)const  
    {  
        return dblcmp(a.x - x) == 0 && dblcmp(a.y - y) == 0;  
    }  
    bool operator < (point a)const  
    {  
        return dblcmp(a.x - x) == 0   dblcmp(y - a.y) < 0 : x < a.x;  
    }  
  
}p[MAXN];  
struct line  
{  
    point a,b;  
    line(){}  
    line(point _a,point _b)  
    {  
        a=_a;  
        b=_b;  
    }  
    bool parallel(line v)  
    {  
        return dblcmp(b.sub(a).det(v.b.sub(v.a))) == 0;  
    }  
    point crosspoint(line v)  
    {  
        double a1 = v.b.sub(v.a).det(a.sub(v.a));  
        double a2 = v.b.sub(v.a).det(b.sub(v.a));  
        return point((a.x * a2 - b.x * a1) / (a2 - a1), (a.y * a2 - b.y * a1) / (a2 - a1));  
    }  
    bool operator == (line v)const  
    {  
        return (a == v.a) && (b == v.b);  
    }  
};  
struct halfplane:public line  
{  
    double angle;  
    halfplane(){}  
    //表示向量 a->b逆时针(左侧)的半平面  
    halfplane(point _a, point _b)  
    {  
        a = _a;  
        b = _b;  
    }  
    halfplane(line v)  
    {  
        a = v.a;  
        b = v.b;  
    }  
    void calcangle()  
    {  
        angle = atan2(b.y - a.y, b.x - a.x);  
    }  
    bool operator <(const halfplane &b)const  
    {  
        return dblcmp(angle - b.angle) < 0;  
    }  
};  
struct polygon  
{  
    int n;  
    point p[MAXN];  
    line l[MAXN];  
    double area;  
    void getline()  
    {  
        for (int i = 0; i < n; i++)  
        {  
            l[i] = line(p[i], p[(i + 1) % n]);  
        }  
    }  
    void getarea()  
    {  
        area = 0;  
        int a = 1, b = 2;  
        while(b <= n - 1)  
        {  
            area += p[a].sub(p[0]).det(p[b].sub(p[0]));  
            a++;  
            b++;  
        }  
        area = fabs(area) / 2;  
    }  
}convex;  
bool judge(point a, point b, point o)  
{  
    return dblcmp(a.sub(o).det(b.sub(o))) <= 0; //此处有等于号代表的是求出的半平面交为一个点不合法,去掉等于号则代表交成一个点也行  
}  
struct halfplanes  
{  
    int n;  
    halfplane hp[MAXN];  
    point p[MAXN];  
    int que[MAXN];  
    int st, ed;  
    void push(halfplane tmp)  
    {  
        hp[n++] = tmp;  
    }  
    void unique()  
    {  
        int m = 1, i;  
        for (i = 1; i < n;i++)  
        {  
            if (dblcmp(hp[i].angle - hp[i - 1].angle))hp[m++] = hp[i];  
            else if (dblcmp(hp[m - 1].b.sub(hp[m - 1].a).det(hp[i].a.sub(hp[m - 1].a)) >
0))hp[m - 1] = hp[i]; } n = m; } bool halfplaneinsert() { int i; for (i = 0; i < n; i++) hp[i].calcangle(); sort(hp, hp + n); unique(); que[st = 0] = 0; que[ed = 1] = 1; p[1] = hp[0].crosspoint(hp[1]); for (i = 2; i < n; i++) { while (st < ed && judge(hp[i].b, p[ed], hp[i].a)) ed--; while (st < ed && judge(hp[i].b, p[st + 1], hp[i].a)) st++; que[++ed] = i; if (hp[i].parallel(hp[que[ed - 1]])) return false; p[ed] = hp[i].crosspoint(hp[que[ed - 1]]); } while (st < ed && judge(hp[que[st]].b, p[ed], hp[que[st]].a)) ed--; while (st < ed && judge(hp[que[ed]].b, p[st + 1], hp[que[ed]].a)) st++; if (st + 1 >= ed)return false; return true; } void getconvex(polygon &con) { p[st] = hp[que[st]].crosspoint(hp[que[ed]]); con.n = ed - st + 1; int j = st, i = 0; for (; j <= ed; i++, j++) { con.p[i] = p[j]; } } }h; int A[MAXN], B[MAXN], C[MAXN]; int n; int main() { double xa, xb, ya, yb; scanf("%d", &n); for(int i = 0; i < n; i++) scanf("%d%d%d", &A[i], &B[i], &C[i]); for(int i = 0; i < n; i++) { int flag = 0; h.n = 0; h.push(halfplane(point(0, 0), point(INF, 0))); h.push(halfplane(point(INF, 0), point(INF, INF))); h.push(halfplane(point(INF, INF), point(0, INF))); h.push(halfplane(point(0, INF), point(0, 0))); for(int j = 0; j < n; j++) { if(j == i) continue; double a = 1.0 / A[j] - 1.0 / A[i]; double b = 1.0 / B[j] - 1.0 / B[i]; double c = 1.0 / C[j] - 1.0 / C[i]; int d1 = dblcmp(a); int d2 = dblcmp(b); int d3 = dblcmp(c); if(!d1) { if(!d2) { if(d3 <= 0) { flag = 1; break; } continue; } xa = 0, xb = d2; ya = yb = -c / b; } else { if(!d2) { xa = xb = -c / a; ya = 0, yb = -d1; } else { xa = 0; ya = -c / b; xb = d2; yb = -(c + a * xb) / b; } } h.push(halfplane(point(xa, ya), point(xb, yb))); } if(flag || !h.halfplaneinsert() ) puts("No"); else puts("Yes"); } return 0; }