解题思路:首先我们可以得出的dp状态是,dp[i][j]表示第i天有j张股票,最多能持有多少钱,初始值dp[0][0] = 0 , 其余都为-INF。那么我们可以得到一个时间复杂度为o(t*mxp*交易上限)的暴力转移方程,这样还是会超时。找单调性,对于买入股票(卖出跟买入差不多的),设上一次能转移过来的交易日为k( if ( i <= w ) k = 0 ; else k =i-w-1 ;),而j张股票的最优值是从i推过来的,那么j+1的最优值至少是从i推过来的,这个性质我是这样推出来的:
若dp[k][i] - (j-i) * x (x表示当天的买入单价)>dp[k][i-1] - (j-(i-1)) *x,则dp[k][i] - (j+1-i) * x > dp[k][i-1] - (j+1-(i-1)) * x。这样就有单调性了,那么就可以用单调队列优化了。
#include#include #include using namespace std ; const int INF = -10000000 ; const int maxn = 2222 ; int w , t , mxp ; struct Deque { int val[maxn] , pos[maxn] ; int tail , star ; void init () { star = 1 , tail = 0 ; } int empty () { return star > tail ; } void push ( int id , int v ) { while ( !empty () && val[tail] < v ) tail -- ; val[++tail] = v ; pos[tail] = id ; } int get ( int p , int k , int flag ) { if ( !flag ) { while ( pos[star] < p - k ) star ++ ; return pos[star] ; } else { while ( pos[star] > p + k ) star ++ ; return pos[star] ; } } } q ; int dp[maxn][maxn] ; int a[maxn] , b[maxn] , c[maxn] , d[maxn] ; int main () { int cas ; scanf ( "%d" , &cas ) ; while ( cas -- ){ int i , j , k ; scanf ( "%d%d%d" , &t , &mxp , &w ) ; for ( i = 1 ; i <= t ; i ++ ) scanf ( "%d%d%d%d" , &a[i] , &b[i] , &c[i] , &d[i] ) ; for ( i = 0 ; i <= t ; i ++ ) for ( j = 0 ; j <= mxp ; j ++ ) dp[i][j] = INF ; dp[0][0] = 0 ; for ( i = 1 ; i <= t ; i ++ ) { for ( j = 0 ; j <= mxp ; j ++ ) dp[i][j] = dp[i-1][j] ; q.init () ; if ( i <= w ) k = 0 ; else k = i - w - 1 ; for ( j = 0 ; j <= mxp ; j ++ ) { q.push ( j , dp[k][j] + j * a[i] ) ; int id = q.get ( j , c[i] , 0 ) ; dp[i][j] = max ( dp[i][j] , dp[k][id] - (j-id) * a[i] ) ; } q.init () ; for ( j = mxp ; j >= 0 ; j -- ) { q.push ( j , dp[k][j] + j * b[i] ) ; int id = q.get ( j , d[i] , 1 ) ; dp[i][j] = max ( dp[i][j] , dp[k][id] + (id-j) * b[i] ) ; } } int ans = 0 ; for ( i = 0 ; i <= mxp ; i ++ ) ans = max ( ans , dp[t][i] ) ; printf ( "%d\n" , ans ) ; } return 0 ; }