#include#include #include #include #include #define LL long long #define CLR(a, b) memset(a, b, sizeof(a)) using namespace std; const double eps = 1e-6; const double INF = 1e18; int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 -1 : 1; } struct Point { double x, y; Point(double x=0, double y=0):x(x),y(y) { } void read(){ scanf("%lf%lf", &x, &y); } }; typedef Point Vector; Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); } Vector operator - (Point A, Point B) { return Vector(A.x-B.x, A.y-B.y); } Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } bool operator == (const Point& a, const Point &b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } double angle(Vector v) { return atan2(v.y, v.x); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } //点在p线段上 bool OnSegment(Point p, Point a1, Point a2) { return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) <= 0; //线段包含端点时改成<= } //线段相交判定 bool SegmentItersection(Point a1, Point a2, Point b1, Point b2) { double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1), c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1); return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0; } const int N = 110; Point p[N]; int n; int isPointInPolygon(Point tmp) { int wn = 0; for (int i = 0; i < n; i++) { if (OnSegment(tmp, p[i], p[(i + 1) % n])) return -1; //边界 int k = dcmp(Cross(p[(i + 1) % n] - p[i], tmp - p[i])); int d1 = dcmp(p[i].y - tmp.y); int d2 = dcmp(p[(i + 1) % n].y - tmp.y); if (k > 0 && d1 <= 0 && d2 > 0) wn++; if (k < 0 && d2 <= 0 && d1 > 0) wn--; } if (wn != 0) return 1; //内部 return 0; //外部 } bool isok[N][N], vis[N][N]; double dp[N][N], len[N][N]; bool ok(int i, int j) { if (!isPointInPolygon((p[i] + p[j]) * 0.5)) return false;///线段在多边形外部 for (int r = 0; r < n; r++) { if (r != i && r != j)///在内部时 { if (SegmentItersection(p[r], p[(r + 1) % n], p[i], p[j])) return false;///与其它的边相交(不判端点) if (OnSegment(p[r], p[i], p[j])) return false;///(判端点) } } return true; } void init() { for (int i = 0; i < n; i++) for (int j = i + 1; j < n; j++) { if (ok(i, j)) isok[j][i] = isok[i][j] = true; else isok[j][i] = isok[i][j] = false; len[j][i] = len[i][j] = Length(p[i] - p[j]); } } double dpf(int l, int r) { if (r - l <= 2) return 0; if (vis[l][r]) return dp[l][r]; vis[l][r] = true; double &ans = dp[l][r]; ans = 1e100; for (int i = l + 2; i <= r - 2; i++) { if (isok[l][i] && isok[i][r]) ans = min(ans, dpf(l, i) + dpf(i, r) + len[l][i] + len[i][r]); } if (isok[l + 1][r]) ans = min(ans, dpf(l + 1, r) + len[l + 1][r]); if (isok[l][r - 1]) ans = min(ans, dpf(l, r - 1) + len[l][r - 1]); return ans; } int main() { int nc = 1; while(~scanf("%d", &n)) { for(int i = 0; i < n; i++) p[i].read();///题目输入的点是按时针顺序的 init(); CLR(vis, 0); printf("Case %d: %.4f\n", nc++, dpf(0, n - 1)); } }