可以用递推或者递归,其实递归更好理解,递推还要确定滚动方向。
dp[i][j]表示字符i到j位置上最少需要几步构成回文。
dp方法为:如果str[i] = str[j],dp[i][j]=dp[i + 1][j - 1]; 否则dp[i][j] = min(dp[i + 1][j], dp[i][j - 1], dp[i + 1][j - 1]) + 1
由于定义min是没括上括号,调了老旧 - -
代码:
/* * Author: illuz* Blog: http://blog.csdn.net/hcbbt * File: uva10739.cpp * Create Date: 2013-11-08 15:20:51 * Descripton: dp */ #include #include #define min(a, b) ((a) < (b) (a) : (b)) const int MAXN = 1010; int dp[MAXN][MAXN]; char ch[MAXN]; int t, cas; int main() { scanf("%d", &t); for (cas = 1; cas <= t; cas++) { scanf("%s", ch); int len = strlen(ch); for (int i = 0; i < len; i++) dp[i][i] = 0; for (int i = len - 1; i > = 0; i--) for (int j = i + 1; j < len; j++) if (ch[i] == ch[j]) dp[i][j] = dp[i + 1][j - 1]; else dp[i][j] = min(min(dp[i + 1][j], dp[i + 1][j - 1]), dp[i][j - 1]) + 1; printf("Case %d: %d\n", cas, dp[0][len - 1]); } return 0; }